Dan's Brain


þÿ�+�+�+� � �t�i�t�l�e� �=� �"�E�l�e�m�e�n�t�i� �d�i� �P�r�o�b�a�b�i�l�i�t�á� �e� �S�t�a�t�i�s�t�i�c�a�"� � �a�u�t�h�o�r� �=� �[�"�D�a�n�i�e�l� �B�i�a�s�i�o�t�t�o�"�]� � �t�a�g�s� �=� �[�"�u�n�i�v�e�r�s�i�t�y�"�]� � �d�r�a�f�t� �=� �f�a�l�s�e� � �+�+�+� � � � �-� � � �T�e�a�c�h�e�r�:� � �R�o�b�e�r�t�a� �S�i�r�o�v�i�c�h� � � � �-� � � �r�-�p�r�o�j�e�c�t�.�o�r�g� � �-� � � �E�d�i�t�o�r�:� �r�-�s�t�u�d�i�o� � �-� � � �E�s�a�m�e�:� � � � � � �-� � � �Q�u�i�z� �M�o�o�d�l�e� � � � � � � � � � �-� � � �E�s�e�r�c�i�z�i� �P�r�o�b�a�b�i�l�i�t�a�’� � � � � � � � � � �-� � � �E�s�e�r�c�i�z�i� �S�t�a�t�i�s�t�i�c�a� �(�r�)� � �-� � � �L�i�b�r�i�:� � � � � � �-� � � �B�e�r�t�s�e�k�a�s�i� �-� �T�s�i�t�s�i�k�l�i�s� �� �I�n�t�r�o�d�u�c�t�i�o�n� �t�o� �P�r�o�b�a�b�i�l�i�t�y� � � � � � � � � � �-� � � �o�t�t�i�m�o� �t�e�s�t�o� �d�i� �t�e�o�r�i�a� �(�M�I�T�)� � � � � � �-� � � �R�o�s�s� �� �I�n�t�r�o�d�u�c�t�i�o�n� �t�o� �P�r�o�b�a�b�i�l�i�t�y� �a�n�d� �S�t�a�t�i�s�t�i�c�s� �f�o�r� �E�n�g�i�n�e�e�r�s� �a�n�d� �S�c�i�e�n�t�i�s�t�s� � � � � � � � � � �-� � � �f�o�n�t�e� �d�i� �e�s�e�r�c�i�z�i� � � � � � �-� � � �V�e�r�z�a�n�i� �� �U�s�i�n�g� �R� �f�o�r� �I�n�t�r�o�d�u�c�t�o�r�y� �S�t�a�t�i�s�t�i�c�s� � � � � � � � � � �-� � � �e�s�e�r�c�i�z�i� �d�i� �s�t�a�t�i�s�t�i�c�a� � �-� � � �E�s�e�r�c�i�z�i� �a�g�g�i�u�n�t�i�v�i� �P�e�a�r�s�o�n� � � � � � �-� � � �s�e�c�o�n�d�o� �M�o�o�d�l�e� � �-� � � �P�r�o�g�r�a�m�m�a� � � � � � �-� � � ���P�r�o�b�a�b�i�l�i�t�à���:� � � � � � � � � � �-� � � �S�p�a�z�i�o� �c�a�m�p�i�o�n�a�r�i�o� �e� �p�r�o�b�a�b�i�l�i�t�à�,� �i�n�s�i�e�m�i�,� �m�o�d�e�l�l�i� �p�r�o�b�a�b�i�l�i�s�t�i�c�i�,� �p�r�o�b�a�b�i�l�i�t�à� �c�o�n�d�i�z�i�o�n�a�t�a�,� �t�e�o�r�e�m�a� �d�e�l�l�e� �p�r�o�b�a�b�i�l�i�t�à� �t�o�t�a�l�i�,� �f�o�r�m�u�l�a� �d�i� �B�a�y�e�s�,� �i�n�d�i�p�e�n�d�e�n�z�a�.� � � � � � � � � � �-� � � �V�a�r�i�a�b�i�l�i� �a�l�e�a�t�o�r�i�e� �d�i�s�c�r�e�t�e�,� �f�u�n�z�i�o�n�e� �d�i� �d�e�n�s�i�t�à� �d�i�s�c�r�e�t�a�,� �f�u�n�z�i�o�n�i� �d�i� �v�a�r�i�a�b�i�l�i� �a�l�e�a�t�o�r�i�e�,� �a�t�t�e�s�a�,� �v�a�r�i�a�n�z�a�.� � � � � � � � � � �-� � � �D�e�n�s�i�t�à� �d�i�s�c�r�e�t�a� �c�o�n�g�i�u�n�t�a� �d�i� �v�a�r�i�a�b�i�l�i� �m�u�l�t�i�d�i�m�e�n�s�i�o�n�a�l�i�,� �c�o�n�d�i�z�i�o�n�a�m�e�n�t�o� �e� �i�n�d�i�p�e�n�d�e�n�z�a�,� �i�n�d�i�p�e�n�d�e�n�z�a� �c�o�n�d�i�z�i�o�n�a�l�e�.� � � � � � � � � � �-� � � �V�a�r�i�a�b�i�l�i� �a�l�e�a�t�o�r�i�e� �c�o�n�t�i�n�u�e�,� �f�u�n�z�i�o�n�e� �d�i� �d�e�n�s�i�t�à�,� �f�u�n�z�i�o�n�e� �d�i� �d�i�s�t�r�i�b�u�z�i�o�n�e� �c�u�m�u�l�a�t�a�.� � � � � � � � � � �-� � � �D�e�n�s�i�t�à� �d�i� �p�r�o�b�a�b�i�l�i�t�à� �v�a�r�i�a�b�i�l�i� �a�l�e�a�t�o�r�i�e� �m�u�l�t�i�d�i�m�e�n�s�i�o�n�a�l�i�.� � � � � � � � � � �-� � � �C�o�v�a�r�i�a�n�z�a� �e� �c�o�r�r�e�l�a�z�i�o�n�e�.� � � � � � � � � � �-� � � �L�e�g�g�e� �d�e�i� �g�r�a�n�d�i� �n�u�m�e�r�i� �e� �t�e�o�r�e�m�a� �d�e�l� �l�i�m�i�t�e� �c�e�n�t�r�a�l�e�.� � � � � � �-� � � ���S�t�a�t�i�s�t�i�c�a���:� � � � � � � � � � �-� � � �I�n�t�r�o�d�u�z�i�o�n�e� �a� �R�.� � � � � � � � � � �-� � � �D�a�t�i� �u�n�i�v�a�r�i�a�t�i�,� �t�i�p�i� �d�i� �d�a�t�i�,� �i�n�d�i�c�i� �r�i�a�s�s�u�n�t�i�v�i� �d�i� �p�o�s�i�z�i�o�n�e�,� �d�i� �v�a�r�i�a�b�i�l�i�t�à� �e� �d�i� �f�o�r�m�a�.� � � � � � � � � � �-� � � �R�a�p�p�r�e�s�e�n�t�a�z�i�o�n�i� �g�r�a�f�i�c�h�e�,� �i�s�t�o�g�r�a�m�m�i�,�b�o�x� �p�l�o�t� �e� �s�c�a�t�t�e�r�p�l�o�t�.� � � � � � � � � � �-� � � �C�o�n�f�r�o�n�t�i� �q�u�a�l�i�t�a�t�i�v�i�,� �d�a�t�i� �a�p�p�a�i�a�t�i�.� � � � � � � � � � �-� � � �D�a�t�i� �u�n�i�v�a�r�i�a�t�i� �c�a�t�e�g�o�r�i�a�l�i� �e� �t�a�b�e�l�l�e�.� � � � � � � � � � �-� � � �I�n�f�e�r�e�n�z�a� �s�t�a�t�i�s�t�i�c�a�:� �s�t�i�m�a� �p�u�n�t�u�a�l�e�,� � �i�n�t�e�r�v�a�l�l�i� �d�i� �c�o�n�f�i�d�e�n�z�a� �(�p�r�o�p�o�r�z�i�o�n�i�,� �m�e�d�i�e�,� �v�a�r�i�a�n�z�e�,� �d�i�f�f�e�r�e�n�z�e� �d�i� �m�e�d�i�e�)�.� � � � � � � � � � �-� � � �T�e�s�t� �d�i� �i�p�o�t�e�s�i� �(�p�r�o�p�o�r�z�i�o�n�i�,� �m�e�d�i�e�)�.� � � � � � �#�#� �P�r�o�b�a�b�i�l�i�t�á� �{�#�p�r�o�b�a�b�i�l�i�t�á�}� � � � � � �#�#�#� �d�e�s�c�r�i�v�e� �e�v�e�n�t�i� �s�o�g�g�e�t�t�i� �a� �casualitá� �{�#�d�e�s�c�r�i�v�e�-�e�v�e�n�t�i�-�s�o�g�g�e�t�t�i�-�a�-�c�a�s�u�a�l�i�t�á�}� � � � �-� � � �n�a�s�c�e� �n�e�l�l�’�a�m�b�i�t�o� �d�e�l� �g�i�o�c�o� �d�’�a�z�z�a�r�d�o� �� �s�e�c�o�n�d�a� �m�e�t�á� �d�e�l� �8�0�0� � � � � � �#�#�#�#� �e�s�p�e�r�i�m�e�n�t�i� �i�l� �c�u�i� �e�s�i�t�o� �n�o�n� �e�’� �p�r�e�v�e�d�i�b�i�l�e� �a� �p�r�i�o�r�i� �{�#�e�s�p�e�r�i�m�e�n�t�i�-�i�l�-�c�u�i�-�e�s�i�t�o�-�n�o�n�-�e�-�p�r�e�v�e�d�i�b�i�l�e�-�a�-�p�r�i�o�r�i�}� � � � � � �#�#�#�#� �c�a�s�u�a�l�i�t�a�’� �l�e�g�a�t�a� �a�l�l�a� �c�o�m�p�l�e�s�s�i�t�a�’� �{�#�c�a�s�u�a�l�i�t�a�-�l�e�g�a�t�a�-�a�l�l�a�-�c�o�m�p�l�e�s�s�i�t�a�}� � � � �-� � � �s�a�r�e�b�b�e� �d�e�s�c�r�i�v�i�b�i�l�e� �c�o�n� �s�t�r�u�m�e�n�t�i� �c�l�a�s�s�i�c�i� �m�a� �c�i�o�’� �s�o�l�o� �c�o�n� �s�i�s�t�e�m�i� �<�s�p�a�n� �c�l�a�s�s�=�"�u�n�d�e�r�l�i�n�e�"�>�t�r�o�p�p�o�<�/�s�p�a�n�>� �c�o�m�p�l�e�s�s�i�,� �c�h�e� �n�o�n� �s�a�p�p�i�a�m�o� �r�i�s�o�l�v�e�r�e� � � � � � �#�#�#� �I�n�s�i�e�m�e� �{�#�i�n�s�i�e�m�e�}� � � � � � �#�#�#�#� �c�o�l�l�e�z�i�o�n�e� �d�i� �o�g�g�e�t�t�i� �(�e�l�e�m�e�n�t�i�)� �{�#�c�o�l�l�e�z�i�o�n�e�-�d�i�-�o�g�g�e�t�t�i�-�-�e�l�e�m�e�n�t�i�}� � � � � � �#�#�#�#� �N�a�t�u�r�a�l�i� �-� �c�o�n�t�i�e�n�e� �u�n� �n�u�m�e�r�o� �n� �d�i� �e�l�e�m�e�n�t�i� �(�f�i�n�i�t�o� �o� �i�n�f�i�n�i�t�o�)� �{�#�n�a�t�u�r�a�l�i�-�c�o�n�t�i�e�n�e�-�u�n�-�n�u�m�e�r�o�-�n�-�d�i�-�e�l�e�m�e�n�t�i�-�-�f�i�n�i�t�o�-�o�-�i�n�f�i�n�i�t�o�}� � � � �<�!�-�-�l�i�s�t�-�s�e�p�a�r�a�t�o�r�-�-�>� � � � �-� � �s�o�n�o� �t�u�t�t�i� �e�l�e�n�c�a�b�i�l�i� � � � � � � � �<�!�-�-�l�i�s�t�-�s�e�p�a�r�a�t�o�r�-�-�>� � � � � � � � �-� � �i�n�f�i�n�i�t�o� �n�u�m�e�r�a�b�i�l�e� � � � � � �#�#�#�#� �R�e�a�l�i� �{�#�r�e�a�l�i�}� � � � �<�!�-�-�l�i�s�t�-�s�e�p�a�r�a�t�o�r�-�-�>� � � � �-� � �i�n�f�i�n�i�t�o� �n�o�n� �n�u�m�e�r�a�b�i�l�e� �|� �p�i�u�’� �c�h�e� �n�u�m�e�r�a�b�i�l�e� � � � � � � � �<�!�-�-�l�i�s�t�-�s�e�p�a�r�a�t�o�r�-�-�>� � � � � � � � �-� � �d�e�s�c�r�i�t�t�i� �c�o�n� �u�n�a� �p�r�o�p�r�i�e�t�a�’� � � � � � �#�#�#�#� �U�s�o� �i�n� �P�r�o�b�a�b�i�l�i�t�a�’� �{�#�u�s�o�-�i�n�-�p�r�o�b�a�b�i�l�i�t�a�}� � � � �g�l�i� �i�n�s�i�e�m�i� �s�o�n�o� �u�s�a�t�i� �p�e�r� �d�e�s�c�r�i�v�e�r�e� �g�l�i� �e�s�i�t�i� �p�o�s�s�i�b�i�l�i� �d�e�g�l�i� �e�s�p�e�r�i�m�e�n�t�i� �p�r�o�b�a�b�i�l�i�s�t�i�c�i� � � � � � �#�#�#�#� �S�e� �t�u�t�t�i� �g�l�i� �e�l�e�m�e�n�t�i� �d�i� �A� �s�o�n�o� �m�e�m�b�r�i� �d�i� �B� �{�#�s�e�-�t�u�t�t�i�-�g�l�i�-�e�l�e�m�e�n�t�i�-�d�i�-�a�-�s�o�n�o�-�m�e�m�b�r�i�-�d�i�-�b�}� � � � �<�!�-�-�l�i�s�t�-�s�e�p�a�r�a�t�o�r�-�-�>� � � � �-� � �A� �e�’� �c�o�n�t�e�n�u�t�o� �i�n� �B� � � � � � �#�#�#�#� �O�m�e�g�a� �{�#�o�m�e�g�a�}� � � � �<�!�-�-�l�i�s�t�-�s�e�p�a�r�a�t�o�r�-�-�>� � � � �-� � �i�n�s�i�e�m�e� �d�i� �tutti� �i� �p�o�s�s�i�b�i�l�i� �e�s�i�t�i� � � � � � �#�#�#�#� �P�a�r�t�i�z�i�o�n�i� �A�i� �d�i� �S� �{�#�p�a�r�t�i�z�i�o�n�i�-�a�i�-�d�i�-�s�}� � � � �<�!�-�-�l�i�s�t�-�s�e�p�a�r�a�t�o�r�-�-�>� � � � �-� � �i�n�s�i�e�m�i� �c�h�e� �c�o�p�r�o�n�o� �S� � � � �<�!�-�-�l�i�s�t�-�s�e�p�a�r�a�t�o�r�-�-�>� � � � �-� � �i�n�s�i�e�m�i� �d�i�s�g�i�u�n�t�i� �a� �d�u�e� �a� �d�u�e� � � � � � �#�#�#�#� �L�e�g�g�i� �d�i� �d�e� �M�o�r�g�a�n� �{�#�l�e�g�g�i�-�d�i�-�d�e�-�m�o�r�g�a�n�}� � � � � � �#�#�#� �P�r�o�b�a�b�i�l�i�t�á� �d�i� �E�v�e�n�t�i� �{�#�p�r�o�b�a�b�i�l�i�t�á�-�d�i�-�e�v�e�n�t�i�}� � � � � � �#�#�#�#� �M�o�d�e�l�l�o� �p�r�o�b�a�b�i�l�i�s�t�i�c�o� �{�#�m�o�d�e�l�l�o�-�p�r�o�b�a�b�i�l�i�s�t�i�c�o�}� � � � �<�!�-�-�l�i�s�t�-�s�e�p�a�r�a�t�o�r�-�-�>� � � � �-� � �d�e�s�c�r�i�z�i�o�n�e� �m�a�t�e�m�a�t�i�c�a� �d�e�l� � � � � � � � �-� � � �e�s�p�e�r�i�m�e�n�t�o� �p�r�o�b�a�b�i�l�i�s�t�i�c�o� �c�h�e� �s�t�i�a�m�o� �a�n�a�l�i�z�z�a�n�d�o� � � � � � � � � � �-� � � �s�p�a�z�i�o� �c�a�m�p�i�o�n�a�r�i�o� � � � � � � � � � �-� � � �legge di probabilita'� � � � � � � � � � � � � � �-� � � �a�d� �o�g�n�i� �e�s�i�t�o� �(�s�o�t�t�o�i�n�s�i�e�m�e� �d�i� �O�m�e�g�a�)� �a�s�s�e�g�n�a� �u�n� �n�u�m�e�r�o� �p�o�s�i�t�i�v�o� �d�e�t�t�o� �probabilita'� �d�i� �t�a�l�e� �e�v�e�n�t�o� � � � �<�!�-�-�l�i�s�t�-�s�e�p�a�r�a�t�o�r�-�-�>� � � � �-� � �def� �L�e�g�g�e� �d�i� �P�r�o�b�a�b�i�l�i�t�a�’� �P� � � � � � � � �I�n�s�i�e�m�e� �d�’�a�r�r�i�v�o� �[�0�,�1�]� � � � �<�!�-�-�l�i�s�t�-�s�e�p�a�r�a�t�o�r�-�-�>� � � � �-� � �A�s�s�i�o�m�i� � � � � � � � �<�!�-�-�l�i�s�t�-�s�e�p�a�r�a�t�o�r�-�-�>� � � � � � � � �-� � �P�o�s�i�t�i�v�i�t�a�’� � � � � � � � �<�!�-�-�l�i�s�t�-�s�e�p�a�r�a�t�o�r�-�-�>� � � � � � � � �-� � �M�i�s�u�r�a� �F�i�n�i�t�a� � � � � � � � � � � � �P�r�o�b�a�b�i�l�i�t�a�’� �d�e�l�l�o� �s�p�a�z�i�o� �c�a�m�p�i�o�n�a�r�i�o� �v�a�l�e� �1� � � � � � � � �<�!�-�-�l�i�s�t�-�s�e�p�a�r�a�t�o�r�-�-�>� � � � � � � � �-� � �A�d�d�i�t�i�v�i�t�a�’� � � � �<�!�-�-�l�i�s�t�-�s�e�p�a�r�a�t�o�r�-�-�>� � � � �-� � �P�r�o�p�r�i�e�t�a�’� �d�e�l�l�a� �P� �d�e�d�o�t�t�e� �d�a�g�l�i� �a�s�s�i�o�m�i� � � � � � � � �<�!�-�-�l�i�s�t�-�s�e�p�a�r�a�t�o�r�-�-�>� � � � � � � � �-� � �M�o�n�o�t�o�n�i�a� � � � � � � � �<�!�-�-�l�i�s�t�-�s�e�p�a�r�a�t�o�r�-�-�>� � � � � � � � �-� � �P� �d�i� �U�n�i�o�n�e� �d�i� �2� �i�n�s� � � � � � � � �<�!�-�-�l�i�s�t�-�s�e�p�a�r�a�t�o�r�-�-�>� � � � � � � � �-� � �P� �d�i� �u�n�i�o�n�e� �&�l�t�;�=� �P� �d�e�g�l�i� �i�n�s�i�e�m�i� � � � � � � � �<�!�-�-�l�i�s�t�-�s�e�p�a�r�a�t�o�r�-�-�>� � � � � � � � �-� � �P� �d�i� �U�n�i�o�n�e� �d�i� �3� �i�n�s� � � � �<�!�-�-�l�i�s�t�-�s�e�p�a�r�a�t�o�r�-�-�>� � � � �-� � �M�o�d�e�l�l�i� �C�o�n�t�i�n�u�i� � � � � � � � �-� � � �P�r�o�b�a�b�i�l�i�t�a�’� �c�o�m�e� �A�r�e�a� � � � �<�!�-�-�l�i�s�t�-�s�e�p�a�r�a�t�o�r�-�-�>� � � � �-� � �E�s�e�m�p�i� �d�i� �P� �-� �L�e�g�g�e� �U�n�i�f�o�r�m�e� �D�i�s�c�r�e�t�a� � � � � � � � �-� � � �F�r�e�q�u�e�n�z�a� �R�e�l�a�t�i�v�a� �d�i� �o�c�c�o�r�r�e�n�z�a� � � � � � �-� � � �P� �c�o�m�e� �a�r�e�a� � � � � � �-� � � �m�o�n�e�t�a� �e�q�u�a� � � � � � � � � � �-� � � �n�o�n� �t�r�u�c�c�a�t�a�:� �l�e� �d�u�e� �f�a�c�c�e� �s�o�n�o� �equipossibili� � � � � � �-� � � �m�o�n�e�t�a� �e�q�u�a� �l�a�n�c�i�a�t�a� �3� �v�o�l�t�e� � � � � � � � � � �-� � � �e�s�c�a�n�o� �d�u�e� �t�e�s�t�e� � � � � � �-� � � �d�u�e� �v�o�l�t�e� �d�a�d�o� �a� �4� �f�a�c�c�e� �e�q�u�o� � � � �<�!�-�-�l�i�s�t�-�s�e�p�a�r�a�t�o�r�-�-�>� � � � �-� � �P�r�o�b�a�b�i�l�i�t�a�’� �C�o�n�d�i�z�i�o�n�a�t�a� � � � � � � � �M�i�s�u�r�a� �c�h�e� �p�e�r�m�e�t�t�e� �d�i� �c�a�l�c�o�l�a�r�e� �p�r�o�b�a�b�i�l�i�t�a�’� �i�n� �c�o�n�d�i�z�i�o�n�i� �d�i� �i�n�f�o�r�m�a�z�i�o�n�e� �p�a�r�z�i�a�l�e� � � � � � � � �-� � � �P�r�e�n�d�e� �i�n� �c�o�n�s�i�d�e�r�a�z�i�o�n�e� �i�n�f�o�r�m�a�z�i�o�n�i� � � � � � � � �\�\�(�P�(�A�|�B�)�=�\�f�r�a�c�{�P�(�A�\�c�a�p� �B�)�}�{�P�(�B�)�}�\�\�)� �o� �e�q�u�i�v�a�l�e�n�t�e�m�e�n�t�e� �\�\�(�P�(�A�\�c�a�p� �B�)� �=� �P�(�A�|�B�)�\�c�d�o�t� �P�(�B�)�\�\�)� � � � � � �\�\�(�P�(�A�\�_�1�\�c�u�p� �A�\�_�2� �|� �B�)� �=� �P�(�A�\�_�1�|�B�)�+�P�(�A�\�_�2�|�B�)�-�P�(�A�\�_�1�\�c�a�p� �A�\�_�2� �|�B�)�\�\�)� � � � � � � � �<�!�-�-�l�i�s�t�-�s�e�p�a�r�a�t�o�r�-�-�>� � � � � � � � �-� � �r�e�g�o�l�a� �d�e�l�l�a� �m�o�l�t�i�p�l�i�c�a�z�i�o�n�e� � � � � � � � � � � � �P�e�r� �e�v�e�n�t�i� �i�n�d�i�p�e�n�d�e�n�t�i� � � � � � � � � � � � �\�b�e�g�i�n�{�e�q�u�a�t�i�o�n�\��}� � � � � � � � � � �\�b�e�g�i�n�{�s�p�l�i�t�}� � � � � � � � � � �P�(�A�\�_�1�\�c�a�p� �A�\�_�2� �\�c�a�p� �.�.�.� �\�c�a�p� �A�\�_�n�)� �=� �&� �P�(�A�\�_�n� �|� �A�\�_�1� �\�c�a�p� �A�\�_�2� �\�c�a�p� �.�.�.� �\�c�a�p� �A�\�_�{�n�-�1�}�)� �\�c�d�o�t� �\�\�\�\� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �&� �P�(�A�\�_�{�n�-�1�}�|�A�\�_�1� �\�c�a�p� �A�\�_�2� �\�c�a�p� �.�.�.� �\�c�a�p� �A�\�_�{�n�-�2�}�)� �\�c�d�o�t� �\�\�\�\� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �&� �.�.�.� �\�\�\�\� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �&� �P�(�A�\�_�2�|�A�\�_�1�)� �\�c�d�o�t� �P�(�A�\�_�1�)� � � � � � � � � � �\�e�n�d�{�s�p�l�i�t�}� � � � � � � � � � �\�e�n�d�{�e�q�u�a�t�i�o�n�\��}� � � � � � � � �<�!�-�-�l�i�s�t�-�s�e�p�a�r�a�t�o�r�-�-�>� � � � � � � � �-� � �F�o�r�m�u�l�a� �d�e�l�l�e� �p�r�o�b�a�b�i�l�i�t�a�’� �t�o�t�a�l�i� � � � � � � � � � � � �I�n� �c�a�s�o� �d�i� �\�\�(�n�\�\�)� �p�a�r�t�i�z�i�o�n�i� �d�i� �\�\�(�\�O�m�e�g�a�\�\�)� �d�e�t�t�e� �\�\�(�A�\�_�i�\�\�)� � � � � � � � � � � � �\�b�e�g�i�n�{�e�q�u�a�t�i�o�n�\��}� � � � � � � � � � �\�b�e�g�i�n�{�a�l�i�g�n�}� � � � � � � � � � �P�(�B�)� �=� �&� �P�(�B�|�A�\�_�1�)�\�c�d�o�t� �P�(�A�\�_�1�)� �+� �\�\�\�\� � � � � � � � � � � � � � � � � �&� �P�(�B�|�A�\�_�2�)�\�c�d�o�t� �P�(�A�\�_�2�)� �+� �\�\�\�\� � � � � � � � � � � � � � � � � �&� �.�.�.� �\�\�\�\� � � � � � � � � � � � � � � � � �&� �P�(�B�|�A�\�_�n�)�\�c�d�o�t� �P�(�A�\�_�n�)� � � � � � � � � � �\�e�n�d�{�a�l�i�g�n�}� � � � � � � � � � �\�e�n�d�{�e�q�u�a�t�i�o�n�\��}� � � � � � � � �<�!�-�-�l�i�s�t�-�s�e�p�a�r�a�t�o�r�-�-�>� � � � � � � � �-� � �F�o�r�m�u�l�a� �d�i� �B�a�y�e�s� � � � � � � � � � � � �I�n� �c�a�s�o� �d�i� �\�\�(�n�\�\�)� �p�a�r�t�i�z�i�o�n�i� �d�i� �\�\�(�\�O�m�e�g�a�\�\�)� �d�e�t�t�e� �\�\�(�A�\�_�i�\�\�)� � � � � � � � � � �\�\�(�P�(�A�\�_�i�|�B�)�=�\�f�r�a�c�{�P�(�B�|�A�\�_�i�)�P�(�A�\�_�i�)�}�{�P�(�B�)�}�\�\�)� � � � �<�!�-�-�l�i�s�t�-�s�e�p�a�r�a�t�o�r�-�-�>� � � � �-� � �E�v�e�n�t�i� �i�n�d�i�p�e�n�d�e�n�t�i� � � � � � � � �NB� �l�’�i�n�d�i�p�e�n�d�e�n�z�a� �é� �u�n�a� �p�r�o�p�r�i�e�t�á� �d�e�l�l�e� �p�r�o�b�a�b�i�l�i�t�á�,� �n�o�n� �d�e�g�l�i� �e�v�e�n�t�i�:� �d�i�p�e�n�d�e� �d�a�l�l�e� �m�i�s�u�r�e� � � � � � �D�u�e� �e�v�e�n�t�i� �s�o�n�o� �i�n�d�i�p�e�n�d�e�n�t�i� �s�e� � � � � � � � � � �\�\�(�P�(�A�|�B�)�=�P�(�A�)�\�\�)� � � � � � � � �A�l�l�o�r�a�:� � � � � � � � � � �\�\�(�\�f�r�a�c�{�P�(�A�\�c�a�p� �B�)�}�{�P�(�B�)�}� �=� �P�(�A�)�\�\�)� � � � � � � � � � �\�\�(�P�(�A�\�c�a�p� �B�)� �=� �P�(�A�)�P�(�B�)�\�\�)� � � � � � � � �def equivalente� � � � � � �D�u�e� �e�v�e�n�t�i� �s�o�n�o� �i�n�d�i�p�e�n�d�e�n�t�i� �s�e� � � � � � � � � � �\�\�(�P�(�A�\�c�a�p� �B�)� �=� �P�(�A�)�P�(�B�)�\�\�)� � � � � � � � �\�\�(�P�(�B�|�A�)�P�(�A�)� �/� �P�(�B�)�=� �P�(�A�)�\�\�)� �p�e�r� �B�a�y�e�s� � � � � � �\�\�(�P�(�B�|�A�)�=�P�(�B�)�\�\�)� � � � � � � � �def equivalente� � � � � � � � � � �\�\�(�P�(�B�|�A�)�=�P�(�B�)�\�\�)� � � � � � � � �-� � � �c�o�n�c�e�t�t�o� �i�n�t�u�i�t�i�v�o� �d�i� �i�n�d�i�p�e�n�d�e�n�z�a� � � � � � � � � � �-� � � �d�u�e� �d�a�d�i� �l�a�n�c�i�a�t�i� �s�o�n�o� �i�n�d�i�p�e�n�d�e�n�t�i� �d�a�l� �p�u�n�t�o� �d�i� �v�i�s�t�a� �m�e�c�c�a�n�i�c�i�s�t�i�c�o� � � � � � � � �E�v�e�n�t�i� �s�e�n�z�a� �i�n�t�e�r�s�e�z�i�o�n�e� �n�o�n� �n�u�l�l�i� �n�o�n� �s�o�n�o� �m�a�i� �i�n�d�i�p�e�n�d�e�n�t�i� � � � � � � � �-� � � �Q�u�i�n�d�i� �A� �e� �A� �c�o�m�p�l�e�m�e�n�t�a�r�e� �s�o�n�o� �s�e�m�p�r�e� �d�i�p�e�n�d�e�n�t�i� � � � � � � � � � �-� � � �q�u�i�n�d�i� �d�a�t�i� �A� �e� �B� �i�n�d�i�p�e�n�d�e�n�t�i� �q�u�e�s�t�i� �s�o�n�o� �i�n�d�i�p�e�n�d�e�n�t�i� �d�a�i� �c�o�m�p�l�e�m�e�n�t�a�r�i� �a�l�t�r�u�i� � � � � � � � �<�!�-�-�l�i�s�t�-�s�e�p�a�r�a�t�o�r�-�-�>� � � � � � � � �-� � �I�n�d�i�p�e�n�d�e�n�z�a� �a� �d�u�e� �a� �d�u�e� � � � � � � � � � � � �\�b�e�g�i�n�{�e�q�u�a�t�i�o�n�\��}� � � � � � � � � � �\�b�e�g�i�n�{�a�l�i�g�n�}� � � � � � � � � � �P�(�\�\�{�(�i�,�j�)�\�\�}�)� �&� �=� �P�(�A�\�_�i� �\�c�a�p� �B�\�_�j�)� �\�\�\�\� � � � � � � � � � � � � � � � � � � � � � � �&� �=� �P�(�A�\�_�i�)� �\�c�d�o�t� �P�(�B�\�_�j�)� �\�\�\�\� � � � � � � � � � � � � � � � � � � � � � � �&� �=� �P�^�1�(�\�\�{�i�\�\�}�)� �\�c�d�o�t� �P�^�2�(�\�\�{�j�\�\�}�)� � � � � � � � � � �\�e�n�d�{�a�l�i�g�n�}� � � � � � � � � � �\�e�n�d�{�e�q�u�a�t�i�o�n�\��}� � � � � � � � �<�!�-�-�l�i�s�t�-�s�e�p�a�r�a�t�o�r�-�-�>� � � � � � � � �-� � �I�n�d�i�p�e�n�d�e�n�z�a� �C�o�n�d�i�z�i�o�n�a�t�a� � � � � � � � � � � � �\�\�(�A�\�\�)� �e� �\�\�(�B�\�\�)� �s�o�n�o� �i�n�d�i�p�e�n�d�e�n�t�i� �c�o�n�d�i�z�i�o�n�a�t�a�m�e�n�t�e� �a� �\�\�(�C�\�\�)� �s�e�:� � � � � � � � � � � � �\�b�e�g�i�n�{�e�q�u�a�t�i�o�n�\��}� � � � � � � � � � �\�b�e�g�i�n�{�a�l�i�g�n�}� � � � � � � � � � �P�(�A� �\�c�a�p� �B� �|� �C�)� �=� �P�(�A�|�C�)� �\�c�d�o�t� �P�(�B�|�C�)� � � � � � � � � � �\�e�n�d�{�a�l�i�g�n�}� � � � � � � � � � �\�e�n�d�{�e�q�u�a�t�i�o�n�\��}� � � � � � � � �<�!�-�-�l�i�s�t�-�s�e�p�a�r�a�t�o�r�-�-�>� � � � � � � � �-� � �M�o�l�t�i�p�l�i�c�a�z�i�o�n�e� �C�a�r�t�e�s�i�a�n�a� � � � � � � � � � � � �L�a� �\�\�(�P�\�\�)� �d�i� �d�u�p�l�e� �o� �n�-�u�p�l�e� �é� � � � � � � � � � �\�\�(�P�=�P�^�1�\��P�^�2�\��.�.�.�\��P�^�n�\�\�)� � � � � � �#�#�#� �V�a�r�i�a�b�i�l�i� �A�l�e�a�t�o�r�i�e� �{�#�v�a�r�i�a�b�i�l�i�-�a�l�e�a�t�o�r�i�e�}� � � � �I�n� �c�a�s�i� �i�n� �c�u�i� �l�’�e�s�p�e�r�i�m�e�n�t�o� �é� �n�u�m�e�r�i�c�o� �s�e�r�v�o�n�o� �a�l�t�r�i� �s�t�r�u�m�e�n�t�i� �r�i�s�p�e�t�t�o� �a� �q�u�e�l�l�i� �u�s�a�t�i� �f�i�n�o� �a�d� �o�r�a� � �U�n�a� �V�a�r�i�a�b�i�l�e� �A�l�e�a�t�o�r�i�a� �é� �u�n�a� �f�u�n�z�i�o�n�e� �d�a� �\�\�(�\�O�m�e�g�a�\�\�)� �i�n� �\�\�(�\�m�a�t�h�b�b�{�R�}�\�\�)� � � � �-� � � �\�\�(�X�,�Y�,�Z�\�\�)� �v�a�r�i�a�b�i�l�i� �a�l�e�a�t�o�r�i�e� � �-� � � �\�\�(�x�,�y�,�z�\�\�)� �p�u�n�t�i� �d�i� �\�\�(�\�m�a�t�h�b�b�{�R�}�\�\�)� � � � �D�i�p�e�n�d�e�n�t�e�m�e�n�t�e� �d�a�l�l�’�i�m�m�a�g�i�n�e� �d�e�l�l�a� �v�a�r�i�a�b�i�l�e� �a�l�e�a�t�o�r�i�a� �q�u�e�s�t�a� �s�a�r�á� �d�i�s�c�r�e�t�a� �o� �c�o�n�t�i�n�u�a� � � � � � �#�#�#�#� �F�u�n�z�i�o�n�e� �d�e�l�l�a� �m�a�s�s�a� �d�i� �P�r�o�b�a�b�i�l�i�t�á� �PMF� �{�#�f�u�n�z�i�o�n�e�-�d�e�l�l�a�-�m�a�s�s�a�-�d�i�-�p�r�o�b�a�b�i�l�i�t�á�-�p�m�f�}� � � � �a�k�a� �Probability Mass Function� � �P�r�o�b�a�b�i�l�i�t�á� �c�h�e� �u�n�a� �v�a�r�i�a�b�i�l�i� �a�l�e�a�t�o�r�i�a� �\�\�(�X�\�\�)� �v�a�l�g�a� �e�s�a�t�t�a�m�e�n�t�e� �\�\�(�x�\�\�)�,� �v�a�l�o�r�e� �a�r�b�i�t�r�a�r�i�o� � �\�\�(�p�\�_�X�(�x�\�_�i�)�=�P�(�X� �=� �x�\�_�i�)�\�\�)� � � � �-� � � �i�l� �g�r�a�f�i�c�o� �d�e�l�l�a� �f�u�n�z�i�o�n�e� �m�o�s�t�r�a� �l�a� �n�a�t�u�r�a� �d�i�s�c�r�e�t�a� �o� �c�o�n�t�i�n�u�a� �d�e�l�l�a� �v�a�r�i�a�b�i�l�e� �\�\�(�X�\�\�)� � � � �D�a�t�o� �c�h�e� �l�e� �v�a�r�i�a�b�i�l�i� �a�l�e�a�t�o�r�i�e� �s�o�n�o� �f�u�n�z�i�o�n�i�:� � �L�e� �i�n�t�e�r�s�e�z�i�o�n�i� �d�e�l�l�e� �c�o�n�t�r�o�i�m�m�a�g�i�n�i� �\�\�(�X�\�_�{�-�1�}�\�\�)� �s�o�n�o� �a� �d�u�e� �a� �d�u�e� �d�i�s�g�i�u�n�t�e� �e� �c�o�p�r�o�n�o� �t�u�t�t�o� �\�\�(�\�O�m�e�g�a�\�\�)� � �\�\�(�\�R�i�g�h�t�a�r�r�o�w� �\�s�u�m�\�_�{�x�\�i�n� �I�m�(�X�)�}� �p�\�_�X�(�x�)�=�1�\�\�)� � � � � � �#�#�#�#� �F�u�n�z�i�o�n�i� �d�i� �V�a�r�i�a�b�i�l�i� �A�l�e�a�t�o�r�i�e� �{�#�f�u�n�z�i�o�n�i�-�d�i�-�v�a�r�i�a�b�i�l�i�-�a�l�e�a�t�o�r�i�e�}� � � � �d�o�v�e� �\�\�(�Y�=�g�\�c�o�m�p� �X�\�\�)� � �\�\�(�P�\�_�Y�(�y�)�=� �\�s�u�m�\�_�{�x�\�i�n� �g�^�-�1�(�\�\�{�y�\�\�}�)�}�P�\�_�X�(�x�)�\�\�)� � � � � � �#�#�#�#� �V�a�r�i�a�b�i�l�i� �A�l�e�a�t�o�r�i�e� �D�i�s�c�r�e�t�e� �{�#�v�a�r�i�a�b�i�l�i�-�a�l�e�a�t�o�r�i�e�-�d�i�s�c�r�e�t�e�}� � � � �<�!�-�-�l�i�s�t�-�s�e�p�a�r�a�t�o�r�-�-�>� � � � �-� � �B�e�r�n�u�l�l�i�a�n�a� � � � � � � � �S�i�n�g�o�l�a� �p�r�o�v�a� �c�o�n� �r�i�s�u�l�t�a�t�o� �d�i�c�o�t�o�m�i�c�o� � � � �<�!�-�-�l�i�s�t�-�s�e�p�a�r�a�t�o�r�-�-�>� � � � �-� � �B�i�n�o�m�i�a�l�e� � � � � � � � �\�\�(�p�\�_�X�(�k�)�=�\�b�i�n�o�m�{�n�}�{�k�}�p�^�k�(�1�-�p�)�^�{�n�-�k�}�\�\�)� �c�o�n� �\�\�(�k� �\�i�n� �I�m�(�X�)�=�\�\�{�1�,�2�,�.�.�.�\�\�}�\�\�)� � � � �<�!�-�-�l�i�s�t�-�s�e�p�a�r�a�t�o�r�-�-�>� � � � �-� � �G�e�o�m�e�t�r�i�c�a� � � � � � � � �\�\�(�p�\�_�X�(�k�)�=�(�1�-�p�)�^�{�1�-�p�}�p�\�\�)� �c�o�n� �\�\�(�k�\�i�n� �I�m�(�X�)�=�\�\�{�1�,�2�,�.�.�.�\�\�}�\�\�)� � � � �<�!�-�-�l�i�s�t�-�s�e�p�a�r�a�t�o�r�-�-�>� � � � �-� � �P�o�i�s�s�o�n� � � � � � � � �\�\�(�X� �\�s�i�m� �\�t�e�x�t�{�P�o�i�s�s�o�n�}�(�\�l�a�m�b�d�a�)�\�\�)� �c�o�n� �\�\�(�\�l�a�m�b�d�a�\�\�)� �i�n�t�e�n�s�i�t�á� � � � � � �\�\�(�p�\�_�X�(�k�)� �=� �\�f�r�a�c�{�\�l�a�m�b�d�a�^�k� �e�^�{�-�\�l�a�m�b�d�a�}�}�{�k�!�}�\�\�)� � � � �<�!�-�-�l�i�s�t�-�s�e�p�a�r�a�t�o�r�-�-�>� � � � �-� � �I�p�e�r�g�e�o�m�e�t�r�i�c�a� � � � � � � � �\�\�(�p�\�_�X�(�k�)� �=� �\�f�r�a�c�{�\�b�i�n�o�m�{�C�}�{�k�}�\�b�i�n�o�m�{�N�-�C�}�{�n�-�k�}�}�{�\�b�i�n�o�m�{�N�}�{�n�}�}�\�\�)� � � � �<�!�-�-�l�i�s�t�-�s�e�p�a�r�a�t�o�r�-�-�>� � � � �-� � �M�e�d�i�a� � � � � � � � �I�n�f�o�r�m�a�z�i�o�n�i� �r�i�a�s�s�u�n�t�i�v�e�,� �p�i�ú� �s�e�m�p�l�i�c�i� �a�n�c�h�e� �s�e� �p�a�r�z�i�a�l�i� � � � � � �\�\�(�E�(�X�)� �=� �\�s�u�m�\�_�{�x�\�i�n� �I�m�(�X�)�}�x� �p�\�_�X�(�x�)�\�\�)� � � � � � � � �-� � � �m�e�d�i�a� �p�e�s�a�t�a� �s�u�l�l�e� �\�\�(�p�\�_�X�\�\�)� �d�e�l�l�e� �s�i�n�g�o�l�e� �\�\�(�x�\�\�)� � � � � � � � �Q�u�e�s�t�a� �h�a� �i�l� �s�i�g�n�i�f�i�c�a�t�o� �d�i� �\�\�(�\�l�a�m�b�d�a�\�\�)� �n�e�l�l�a� �P�o�i�s�s�o�n� � � � �<�!�-�-�l�i�s�t�-�s�e�p�a�r�a�t�o�r�-�-�>� � � � �-� � �M�o�m�e�n�t�o� � � � � � � � �d�i� �o�r�d�i�n�e� �\�\�(�k�\�\�)� � � � � � �\�\�(�m�\�_�k� �=� �E�(�X�^�k�)� �=� �\�s�u�m�\�_�{�x� �\�i�n� �I�m�(�X�)�}� �x�^�2� � �p�\�_�X�(�x�)�\�\�)� � � � �<�!�-�-�l�i�s�t�-�s�e�p�a�r�a�t�o�r�-�-�>� � � � �-� � �V�a�r�i�a�n�z�a� � � � � � � � �A�n�c�h�e� �d�e�t�t�o� �s�c�a�r�t�o� �q�u�a�d�r�a�t�i�c�o� �m�e�d�i�o� � � � � � �\�\�(�V�a�r�(�X�)� �=� �E�(�[�X�-�E�(�X�)�]�^�2�)�\�\�)� � � � � � �\�\�(�V�a�r�(�a�X�+�b�)� �=� �a�^�2� �V�a�r�(�X�)�\�\�)� � � � � � � � �-� � � �q�u�a�d�r�a�t�i�c�a� �n�e�l�l�e� �c�o�s�t�a�n�t�e� �m�o�l�t�i�p�l�i�c�a�t�i�v�e� � � � � � �-� � � �i�n�v�a�r�i�a�n�t�e� �p�e�r� �t�r�a�s�l�a�z�i�o�n�i� � � � �<�!�-�-�l�i�s�t�-�s�e�p�a�r�a�t�o�r�-�-�>� � � � �-� � �D�e�v�i�a�z�i�o�n�e� �S�t�a�n�d�a�r�d� � � � � � � � �R�a�d�i�c�e� �d�e�l�l�a� �V�a�r�i�a�n�z�a� � � � � � �#�#�#�#� �V�a�r�i�a�b�i�l�i� �A�l�e�a�t�o�r�i�e� �C�o�m�p�o�s�t�e� �{�#�v�a�r�i�a�b�i�l�i�-�a�l�e�a�t�o�r�i�e�-�c�o�m�p�o�s�t�e�}� � � � �Indipendenza� � �\�\�(� �p�\�_�{�X�,�Y�}�(�x�,�y�)� �=� �p�\�_�X�(�x�)�p�\�_�Y�(�y�)� �\�\�)� �p�e�r� �g�e�n�e�r�i�c�i� �\�\�(�x�\�\�)� �e� �\�\�(�y�\�\�)� � � � � � �#�#�#�#� �V�a�r�i�a�b�i�l�i� �A�l�e�a�t�o�r�i�e� �C�o�n�t�i�n�u�e� �{�#�v�a�r�i�a�b�i�l�i�-�a�l�e�a�t�o�r�i�e�-�c�o�n�t�i�n�u�e�}� � � � �[�A�p�p�u�n�t�i� �P�r�o�f�]�(�/�h�o�m�e�/�d�a�n�/�D�o�c�u�m�e�n�t�s�/�U�N�I�/�I�I�/�E�P�S�/�e�p�s�A�-�0�4�d�i�c�2�0�.�p�d�f�)� � �\�\�(�I�m�(�X�)�\�\�)� �d�i� �n�a�t�u�r�a� �c�o�n�t�i�n�u�a� � � � �-� � � �n�o�n� �p�o�s�s�i�a�m�o� �u�s�a�r�e� �l�a� �\�\�(�P�M�F�\�\�)� � � � � � �-� � � �i�n� �q�u�a�n�t�o� �l�’�i�m�m�a�g�i�n�e� �n�o�n� �é� �n�u�m�e�r�a�b�i�l�e�,� �n�o�n� �p�o�s�s�i�a�m�o� �a�s�s�o�c�i�a�r�e� �a�d� �o�g�n�i� �p�u�n�t�o� �u�n� �v�a�l�o�r�e� � � � �D�a�t�o� �l�’�i�n�t�e�r�v�a�l�l�o� �\�\�(�A�\�\�)� �a�b�b�i�a�m�o� �q�u�i�n�d�i� �u�n�a� �f�u�n�z�i�o�n�e� �\�\�(�f�\�_�x�:� �\�m�a�t�h�b�b�{�R�}� �\�t�o� �\�m�a�t�h�b�b�{�R�}� �\�\�)� �n�o�n� �n�e�g�a�t�i�v�a� �t�.�c� � �\�\�(�\�f�o�r�a�l�l� �A� �\�s�u�b�s�e�t� �\�m�a�t�h�b�b�{�R�}�\�\�)�:� � � � �-� � � �\�\�(�\�m�a�t�h�b�b�{�P�}�(�X� �\�i�n� �A�)� �=� �\�i�n�t�\�_�A� �f�\�_�{�X�}�(�t�)�d�t�\�\�)� � � � � � �-� � � �i�n�c�l�u�d�e�n�d�o� �o� �m�e�n�o� �g�l�i� �e�s�t�r�e�m�i� �l�a� �\�\�(�P�\�\�)� �n�o�n� �c�a�m�b�i�a� � � � � � � � � � �-� � � �\�\�(�\�m�a�t�h�b�b�{�P�}�(�X� �\�i�n� �A�)� �=� �\�m�a�t�h�b�b�{�P�}�(�X� �=� �a�)� �=� �\�i�n�t�\�_�a�^�a� �f�\�_�X�(�t�)�d�t� �=� �0�\�\�)� � � � �Q�u�e�s�t�a� �é� �d�e�t�t�a� �\�\�(�P�D�F�\�\�)� �Probability Density Function� � � � �<�!�-�-�l�i�s�t�-�s�e�p�a�r�a�t�o�r�-�-�>� � � � �-� � �P�r�o�p�r�i�e�t�á� � � � � � � � �-� � � �\�\�(�\�i�n�t�\�_�\�m�a�t�h�b�b�{�R�}� �f�\�_�X�(�t�)�d�t� �=� �P�(�\�O�m�e�g�a�)� �=� �1�\�\�)� � � � � � �-� � � �\�\�(�\�f�o�r�a�l�l� �x� �\�i�n� �\�m�a�t�h�b�b�{�R�}�,� �f�\�_�X�(�x�)� �\�g�e� �0�\�\�)� � � � � � �-� � � �\�\�(�f�\�_�X�(�x�)�\�\�)� �n�o�n� �é� �u�n�a� �p�r�o�b�a�b�i�l�i�t�á� � � � � � � � � � �-� � � �p�u�ó� �e�s�s�e�r�e� �u�n� �v�a�l�o�r�e� �q�u�a�l�u�n�q�u�e�,� �a�n�c�h�e� �m�a�g�g�i�o�r�e� �d�i� �1� � � � � � �-� � � �\�\�(�\�i�n�t�\�_�x�^�{�x�+�\�d�e�l�t�a�}�f�\�_�X�(�t�)�d�t� �=� �f�\�_�X�(�x�)�\�c�d�o�t�\�d�e�l�t�a�\�\�)� � � � � � � � � � �-� � � �s�e� �\�\�(�\�d�e�l�t�a�\�\�)� �s�u�f�f�i�c�i�e�n�t�e�m�e�n�t�e� �p�i�c�c�o�l�o� � � � �<�!�-�-�l�i�s�t�-�s�e�p�a�r�a�t�o�r�-�-�>� � � � �-� � �U�n�i�f�o�r�m�e� � � � � � � � �\�\�(�X�\�\�)� �h�a� �d�e�n�s�i�t�á� �c�o�s�t�a�n�t�e� �n�e�l�l�’�i�n�t�e�r�v�a�l�l�o� � � � � � �\�\�(�f�\�_�X�(�x�)� �=� �\�f�r�a�c�{�1�}�{�b�-�a�}�\�\�)� �n�e�l�l�’�i�n�t�e�r�v�a�l�l�o� � � � � � � � � � � � � �\�\�(�=�0�\�\�)� � � �a�l�t�r�o�v�e� � � � � � � � �C�a�s�i� �n�o�t�i� � � � � � �\�\�(�U�n�i�f�[�a�,�b�]�\�\�)� � � � � � � � �-� � � �m�e�d�i�a� � � � � � � � � � �\�\�(�\�f�r�a�c�{�a�+�b�}�{�2�}�\�\�)� � � � � � �-� � � �v�a�r�i�a�n�z�a� � � � � � � � � � �\�\�(�\�f�r�a�c�{�(�b�-�a�)�^�{�2�}�}�{�1�2�}�\�\�)� � � � �<�!�-�-�l�i�s�t�-�s�e�p�a�r�a�t�o�r�-�-�>� � � � �-� � �A�t�t�e�s�a� � � � � � � � �\�\�(� �E�(�x�)� �=� �\�i�n�t�^�{�+�\�i�n�f�}�\�_�{�-�\�i�n�f�}�x�\�c�d�o�t� �f�\�_�{�x�}�d�x� �\�\�)� � � � � � � � �-� � � �c�o�r�r�i�s�p�o�n�d�e� �(�é� �l�a� �s�t�e�s�s�a� �c�o�s�a�)� �a�l�l�a� �m�e�d�i�a� �n�e�l�l�e� �V�A� �D�i�s�c�r�e�t�e� � � � � � � � � � �-� � � �t�e�o�r�i�a� �p�i�ú� �a�v�a�n�z�a�t�a� � � � �<�!�-�-�l�i�s�t�-�s�e�p�a�r�a�t�o�r�-�-�>� � � � �-� � �E�s�p�o�n�e�n�z�i�a�l�e� � � � � � � � �\�\�(�\�m�a�t�h�b�b�{�P�}�(�X�\�i�n� �A�)�,� �A� �\�s�u�b�s�e�t� �(�-�\�i�n�f�,� �0�)�\�\�)� �é� �n�u�l�l�a� � � � � � �L�a� �s�u�a� �D�e�n�s�i�t�á� �d�e�c�a�d�e� � � � � � �\�\�(� �f�\�_�X�(�x�)� �=� �\�l�a�m�b�d�a�\�c�d�o�t� �e�^�{�-�\�l�a�m�b�d�a� �x�}� �\�\�)� �s�e� �\�\�(�x� �\�g�e� �0�\�\�)� � � � � � � � � � � � �\�\�(� �=� �0�\�\�)� �a�l�t�r�o�v�e� � � � � � � � �-� � � �\�\�(�X�\�\�)� �p�r�e�n�d�e� �s�o�l�o� �v�a�l�o�r�i� �p�o�s�i�t�i�v�i� � � � � � � � �V�a�l�e� �P�r�o�p�r�i�e�t�á� �d�i� �Assenza della Memoria� � � � � � � � �-� � � �\�\�(� �\�m�a�t�h�b�b�{�P�}�(�X� �>� �m� �\�m�i�d� �X�>�n�)� �=� �\�m�a�t�h�b�b�{�P�}�(�X�>� �m�-�n�)� �\�\�)� � � � � � � � � � �-� � � �c�a�m�b�i�a� �l�’�o�r�i�g�i�n�e� �d�e�i� �t�e�m�p�i� �n�e�l� �c�a�l�c�o�l�o� �d�e�l�l�a� �p�r�o�b�a�b�i�l�i�t�á� �d�i� �s�o�p�r�a�v�v�i�v�e�n�z�a� � � � � � �-� � � �NB� �\�\�(�P�D�F�\�\�)� �s�i�m�i�l�e� �a�l�l�a� �\�\�(�P�M�F�\�\�)� �d�e�l�l�a� �G�e�o�m�e�t�r�i�c�a� � � � � � � � � � �-� � � �a�n�c�h�e� �i�n� �q�u�e�l�l�a� �V�a�r�i�a�b�i�l�e� �A�l�e�a�t�o�r�i�a� �v�a�l�e� �l�a� �P�r�o�p�r�i�e�t�á� �d�i� �A�s�s�e�n�z�a� �d�e�l�l�a� �M�e�m�o�r�i�a� � � � � � � � �C�a�s�i� �n�o�t�i� � � � � � �\�\�(�E�s�p�o�n�[�a�,�b�]�\�\�)� � � � � � � � �-� � � �m�e�d�i�a� � � � � � � � � � �\�\�(�\�f�r�a�c�{�1�}�{�\�l�a�m�b�d�a�}�\�\�)� � � � � � �-� � � �v�a�r�i�a�n�z�a� � � � � � � � � � �\�\�(�\�f�r�a�c�{�1�}�{�\�l�a�m�b�d�a�^�{�2�}�}�\�\�)� � � � �<�!�-�-�l�i�s�t�-�s�e�p�a�r�a�t�o�r�-�-�>� � � � �-� � �N�o�r�m�a�l�e� �o� �G�a�u�s�s�i�a�n�a� � � � � � � � �\�\�(�N�(�\�m�u� �,� �\�s�i�g�m�a�^�2�)�\�\�)� � � � � � � � �-� � � �m�e�d�i�a� � � � � � �-� � � �v�a�r�i�a�n�z�a� � � � � � � � �\�\�(�f�(�x�)� �=� �\�f�r�a�c�{�1�}�{�\�s�q�r�t�{�2�\�p�i� �\�s�i�g�m�a�^�2�}�}� �\�c�d�o�t� �e�^�{� �-� �\�f�r�a�c�{� �(�x� �-� �\�m�u�)�^�2� �}�{� �2� �\�s�i�g�m�a�^�2� �}� �\�\�)� � � � � � �NB� � � � � � � � �-� � � �\�\�(�f�(�\�m�u�)�\�\�)� �m�a�s�s�i�m�o� �d�e�l�l�a� �c�u�r�v�a� �e� �p�u�n�t�o� �m�e�d�i�o� �/� �a�s�s�e� �d�i� �s�i�m�m�e�t�r�i�a� � � � � � �-� � � �\�\�(�\�s�i�g�m�a�^�2�\�\�)� �g�r�a�n�d�e� �\�\�(�\�t�o�\�\�)� �\�\�(�f�(�\�m�u�)�\�\�)� �p�i�c�c�o�l�o� � � � � � � � � � �-� � � �c�u�r�v�a� �b�a�s�s�a� � � � � � �-� � � �\�\�(�\�s�i�g�m�a�^�2�\�\�)� �p�i�c�c�o�l�o� �\�\�(�\�t�o�\�\�)� �\�\�(�f�(�\�m�u�)�\�\�)� �g�r�a�n�d�e� � � � � � � � � � �-� � � �c�u�r�v�a� �a�l�t�a� � � � � � �-� � � �m�a�n�t�e�n�e�n�d�o� �s�e�m�p�r�e� �l�’�a�r�e�a� �c�o�s�t�a�n�t�e� �=� �1� � � � � � � � � � �-� � � �a�l�t�a� �\�\�(�\�t�o�\�\�)� �s�t�r�e�t�t�a� � � � � � � � � � �-� � � �b�a�s�s�a� �\�\�(�\�t�o�\�\�)� �l�a�r�g�a� � � � � � � � �L�a� �c�l�a�s�s�e� �d�e�l�l�e� �V�A� �N�o�r�m�a�l�i� �é� �c�h�i�u�s�a� �r�i�s�p�e�t�t�o� �a� �t�r�a�s�l�a�z�i�o�n�e� �e� �d�i�l�a�t�a�z�i�o�n�e� � � � � � � � �\�\�(�N�(�0� �,� �1�)�\�\�)� �é� �l�a� �normale standard� � � � � � �\�\�(� �\� �\�\�)� � � � � � �#�#�#� �F�u�n�z�i�o�n�e� �d�i� �D�i�s�t�r�i�b�u�z�i�o�n�e� �C�u�m�u�l�a�t�a� �{�#�f�u�n�z�i�o�n�e�-�d�i�-�d�i�s�t�r�i�b�u�z�i�o�n�e�-�c�u�m�u�l�a�t�a�}� � � � ���C�D�F��*� � �N�o�n� �d�i�p�e�n�d�e� �d�a�l�l�a� �n�a�t�u�r�a� �d�e�l�l�e� �V�A� � � � �\�\�(� �F�\�_�x� �:� �\�m�a�t�h�b�b�{�R�}� �\�t�o� �\�m�a�t�h�b�b�{�R�}� �\�\�)� � �\�\�(� �x� �\�t�o� �F�\�_�X� �(�x�)� �=� �P�(�X� �\�l�e� �x�)� �=� �P�(�X� �\�i�n� �[�-�\�i�n�f�t�y� �,� �x�]�)�\�\�)� � � � � � �#�#�#�#� �P�r�o�p�r�i�e�t�á� �c�o�m�u�n�i� �{�#�p�r�o�p�r�i�e�t�á�-�c�o�m�u�n�i�}� � � � �N�o�n� �h�a� �i�m�p�o�r�t�a�n�z�a� �l�a� �n�a�t�u�r�a� �d�e�l�l�e� �v�a�r�i�a�b�i�l�i� �i�n� �q�u�e�s�t�i�o�n�e� � � � �-� � � �l�a� �\�\�(�P�\�\�)� �é� �c�o�n�t�i�n�u�a�,� �s�i� �c�o�m�p�o�r�t�a� �b�e�n�e� �c�o�n� �i� �l�i�m�i�t�i� � �-� � � �\�\�(�\�l�i�m�\�_�{�x� �\�t�o� �\�i�n�f�t�y�}� �F�\�_�X�(�x�)� �=� �\�l�i�m�\�_�{�x� �\�t�o� �\�i�n�f�t�y�}� �P�(�X� �\�l�e� �x�)� �=� �1� �=� �P�(�\�O�m�e�g�a�)�\�\�)� � �-� � � �\�\�(�\�l�i�m�\�_�{�x� �\�t�o� �-�\�i�n�f�t�y�}� �F�\�_�X�(�x�)� �=� �\�l�i�m�\�_�{�x� �\�t�o� �-�\�i�n�f�t�y�}� �P�(�X� �\�l�e� �x�)� �=� �0� �=� �P�(�\�e�m�p�t�y�s�e�t�)�\�\�)� � �-� � � �M�o�n�o�t�o�n�a� �C�r�e�s�c�e�n�t�e� � � � � � �#�#�#� �F�u�n�z�i�o�n�e� �Q�u�a�n�t�i�l�e� �{�#�f�u�n�z�i�o�n�e�-�q�u�a�n�t�i�l�e�}� � � � �I�n�v�e�r�s�a� �d�e�l�l�a� �F�u�n�z�i�o�n�e� �d�i� �D�i�s�t�r�i�b�u�z�i�o�n�e� � � � � � �#�#� �S�t�a�t�i�s�t�i�c�a� �{�#�s�t�a�t�i�s�t�i�c�a�}� � � � � � �#�#�#� �D�a�t�i� �{�#�d�a�t�i�}� � � � �Dati univariati� � � � �-� � � �C�o�n�s�i�d�e�r�i�a�m�o� �u�n�a� �v�a�r�i�a�b�i�l�e� �a�l�l�a� �v�o�l�t�a� � �-� � � �G�e�n�e�r�a�l�m�e�n�t�e� �s�i� �p�a�r�l�a� �d�i� �campionamenti� � � � � � �-� � � �N�o�n� �p�o�s�s�o� �r�a�g�g�i�u�n�g�e�r�e� �t�u�t�t�i� �g�l�i� �i�n�d�i�v�i�d�u�i� �d�e�l�l�a� �p�o�p�o�l�a�z�i�o�n�e� �(�C�h�e� �s�a�r�e�b�b�e� �i�n�v�e�c�e� �u�n� �c�e�n�s�i�m�e�n�t�o�)� � � � � � �-� � � �M�i�s�u�r�a�r�e� �u�n�a� �p�a�r�t�e� �d�e�l�l�a� �p�o�p�o�l�a�z�i�o�n�e� �s�c�e�l�t�a� �c�a�s�u�a�l�m�e�n�t�e� � � � � � �-� � � �E�s�t�r�a�r�r�e� �i�n� �m�a�n�i�e�r�a� �c�a�s�u�a�l�e� �e� �r�a�p�p�r�e�s�e�n�t�a�t�i�v�a� �d�e�l�l�a� �p�o�p�o�l�a�z�i�o�n�e� �i�n�t�e�r�a� � � � �I� �d�a�t�i� �u�n�i�v�a�r�i�a�t�i� �n�o�n� �s�i� �t�r�a�t�t�a�n�o� �i�n� �r�e�l�a�z�i�o�n�e� �a�d� �a�l�t�r�e� �v�a�r�i�a�b�i�l�i� � � � � � �#�#�#� �T�i�p�o�l�o�g�i�e� �d�i� �d�a�t�i� �{�#�t�i�p�o�l�o�g�i�e�-�d�i�-�d�a�t�i�}� � � � �T�a�s�s�o�n�o�m�i�e� � � � �-� � � �F�a�c�t�o�r�s� � � � � � �V�a�r�i�a�b�i�l�i� �c�h�e� �c�o�d�i�f�i�c�a�n�o� �l�’�a�p�p�a�r�t�e�n�e�n�z�a� �a�d� �u�n� �g�r�u�p�p�o� � �-� � � �C�h�a�r�a�c�t�e�r� �D�a�t�a� � � � � � �I�d�e�n�t�i�f�i�c�a�t�i�v�i� � �-� � � �D�i�s�c�r�e�t�e� �D�a�t�a� � � � � � �N�u�m�e�r�i�c�i� �/� �Q�u�a�n�t�i�t�a�t�i�v�i� � �-� � � �C�o�n�t�i�n�u�o�u�s� �D�a�t�a� � � � � � �N�u�m�e�r�i�c�i�/� �Q�u�a�n�t�i�t�a�t�i�v�i� �d�i� �n�a�t�u�r�a� �c�o�n�t�i�n�u�a� � � � �NB� � �L�e� �m�a�t�r�i�c�i� �s�o�n�o� �d�e�f�i�n�i�t�e� �c�o�n� � � � �-� � � �S�o�g�g�e�t�t�i� �s�u�l�l�e� �R�i�g�h�e� � �-� � � �V�a�r�i�a�b�i�l�i� �s�u�l�l�e� �C�o�l�o�n�n�e� � � � � � �#�#�#� �A�n�a�l�i�s�i� �d�e�i� �D�a�t�i� �{�#�a�n�a�l�i�s�i�-�d�e�i�-�d�a�t�i�}� � � � � � �#�#�#�#� �D�e�s�c�r�i�t�t�i�v�a� �{�#�d�e�s�c�r�i�t�t�i�v�a�}� � � � �U�n�a� �p�r�e�-�a�n�a�l�i�s�i� �d�e�i� �d�a�t�i� �p�e�r� �p�o�t�e�r� �c�a�p�i�r�e� �l�a� �q�u�a�l�i�t�a�’� �d�e�i� �d�a�t�i� � � � �-� � � �P�e�r� �d�a�t�i� �n�u�m�e�r�i�c�i� � � � � � �-� � � �Indici� � � � � � � � � � �-� � � �posizione� � � � � � � � � � � � � � �-� � � �M�e�d�i�a� �c�a�m�p�i�o�n�a�r�i�a� �mean()� � � � � � � � � � � � � � � � � � �-� � � �m�e�d�i�a� �a�r�i�t�m�e�t�i�c�a� � � � � � � � � � � � � � � � � � � � � � �-� � � �l�a� �m�e�d�i�a� �e�’� �s�e�n�s�i�b�i�l�e� �a�i� �d�a�t�i� �e�s�t�r�e�m�i�,� �v�i�e�n�e� �s�p�o�s�t�a�t�a� �f�a�c�i�l�m�e�n�t�e� �d�a� �v�a�l�o�r�i� �m�o�l�t�o� �a�l�t�i� �o� �m�o�l�t�o� �b�a�s�s�i� � � � � � � � � � � � � � �-� � � �M�e�d�i�a�n�a� �median()� � � � � � � � � � � � � � � � � � �-� � � �l�a�s�c�i�a� �m�e�t�a�’� �d�e�l�l�e� �o�s�s�e�r�v�a�z�i�o�n�i� �a�l�l�a� �s�u�a� �d�e�s�t�r�a� �e� �m�e�t�a�’� �a�l�l�a� �s�u�a� �s�i�n�i�s�t�r�a� � � � � � � � � � � � � � � � � � �-� � � �l�a� �d�i�f�f�e�r�e�n�z�a� �t�r�a� �m�e�d�i�a� �e� �m�e�d�i�a�n�a� �i�n�d�i�c�a� �i�n� �c�h�e� �d�i�r�e�z�i�o�n�e� �s�i� �t�r�o�v�a�n�o� �i� �v�a�l�o�r�i� �e�s�t�r�e�m�a�l�i� �c�h�e� �i�n�f�l�u�e�n�z�a�n�o� �m�a�g�g�i�o�r�m�e�n�t�e� �l�a� �m�e�d�i�a� � � � � � � � � � � � � � �-� � � �P�e�r�c�e�n�t�i�l�i� �quantile()� � � � � � � � � � �-� � � �dispersione� � � � � � � � � � � � � � �-� � � �V�a�r�i�a�n�z�a� �C�a�m�p�i�o�n�a�r�i�a� � � � � � � � � � � � � � � � � � �-� � � �l�a� �c�u�i� �r�a�d�i�c�e� �e�’� �l�a� �d�e�v�i�a�z�i�o�n�e� �s�t�a�n�d�a�r�d� �sd()� � � � � � � � � � � � � � � � � � � � � � �-� � � �p�e�r� �u�n� �g�u�e�s�s� �c�i� �s�i� �p�u�ó� �b�a�s�a�r�e� �s�u�l�l�a� �v�a�r�i�a�b�i�l�e� �g�a�u�s�s�i�a�n�a� � � � � � � � � � � � � � � � � � � � � � � � � � �-� � � �\�\�(�(�\�m�u� �+� �3�\�s�i�g�m�a� �,� �\�m�u� �-� �3�\�s�i�g�m�a�)�\�\�)� �i�n� �u�n�a� �c�a�m�p�a�n�a� �c�o�m�p�r�e�n�d�e�r�á� �i�l� �9�9�%� �d�e�l�l�’�a�r�e�a� � � � � � � � � � � � � � �-� � � �z�-�s�c�o�r�e�s� � � � � � � � � � � � � � � � � � �-� � � �V�a�l�o�r�i� �s�t�a�n�d�a�r�d�i�z�z�a�t�i� � � � � � � � � � � � � � �-� � � �c�o�e�f�f�i�c�i�e�n�t�e� �d�i� �v�a�r�i�a�z�i�o�n�e� �cv()� � � � � � � � � � � � � � � � � � �-� � � �&�g�t�;�1� �d�i�s�p�e�r�s�o� � � � � � � � � � � � � � � � � � �-� � � �&�l�t�;�1� �c�o�n�c�e�n�t�r�a�t�i� � � � � � � � � � � � � � � � � � �-� � � �=�1� � � � � � � � � � � � � � �-� � � �skewness� � � � � � � � � � � � � � � � � � �-� � � �I�n�d�i�c�e� �d�i� �d�i�s�t�o�r�s�i�o�n�e� � � � � � � � � � � � � � � � � � �-� � � �m�e�d�i�a� �d�e�g�l�i� �z�-�s�c�o�r�e�s� �a�l� �c�u�b�o� � � � � � � � � � � � � � � � � � � � � � �-� � � �\�\�(�\�f�r�a�c�{�1�}�{�n�}�\�s�u�m� �z�\�_�{�i�}�^�{�3�}�\�\�)� � � � � � � � � � � � � � � � � � � � � � �-� � � �~�0� � � � � � � � � � � � � � � � � � � � � � � � � � �-� � � �i� �d�a�t�i� �s�o�n�o� �s�i�m�m�e�t�r�i�c�i� � � � � � � � � � � � � � � � � � � � � � �-� � � �&�g�t�;�0� � � � � � � � � � � � � � � � � � � � � � � � � � �-� � � �a�s�i�m�m�e�t�r�i�a� �v�e�r�s�o� �d�e�s�t�r�a�(�r�i�s�p�e�t�t�o� �a�l�l�a� �m�e�d�i�a�)� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �-� � � �p�i�u�’� �v�a�l�o�r�i� �|�|� �p�i�u�’� �g�r�a�n�d�i� � � � � � � � � � � � � � � � � � � � � � � � � � �-� � � �a�s�i�m�m�e�t�r�i�a� �v�e�r�s�o� �s�i�n�i�s�t�r�a� � � � � � � � � � � � �-� � � �v�a�r�i�a�b�i�l�i�t�a�’� � � � � � � � � � � � � � �-� � � �f�o�r�m�a� � � � � � �-� � � �Grafici� � � � � � � � � � �-� � � �I�s�t�o�g�r�a�m�m�i� �-� �hist()� � � � � � � � � � � � � � �1�.� � �B�i�n�n�i�n�g� �d�e�l�l�’�a�s�s�e� �d�e�l�l�e� �\�\�(�x�\�\�)� � � � � � � � � � � � � � �2�.� � �C�o�n�t�o� �d�e�l�l�e� �o�s�s�e�r�v�a�z�i�o�n�i� �c�h�e� �c�a�d�o�n�o� �i�n� �o�g�n�i� �b�i�n� � � � � � � � � � � � � � �3�.� � �R�a�g�g�r�u�p�p�o� �i�n� �r�e�t�t�a�n�g�o�l�i� �c�o�n� �a�l�t�e�z�z�a� �p�r�o�p�o�r�z�i�o�n�a�l�e� �a�l� �c�o�n�t�e�g�g�i�o� � � � � � � � � � � � � � � � � � �-� � � �q�u�e�s�t�o� �p�e�r�c�h�e�’� �l�’�a�r�e�a� �e�’� �u�n�’�i�n�d�i�c�a�z�i�o�n�e� �d�e�l�l�a� �p�r�o�b�a�b�i�l�i�t�a�’� � � � � � � � � � � � � � � � � � � � � � �-� � � �d�a�n�n�o� �u�n�’�i�d�e�a� �d�e�l�l�a� �PDF� � � � � � � � � � �-� � � �B�o�x� �P�l�o�t� �-� �boxplot()� � � � � � � � � � � � � � �-� � � �B�o�x� �t�r�a� �p�r�i�m�o� �q�u�a�r�t�i�l�e� �e� �t�e�r�z�o� � � � � � � � � � � � � � � � � � �-� � � �c�o�n�t�i�e�n�e� �i�l� �5�0�%� �d�e�l�l�a� �m�a�s�s�a� �c�e�n�t�r�a�l�e� � � � � � � � � � � � � � �-� � � �i�n�d�i�c�a� �n�e�l� �B�o�x� �i�l� �s�e�c�o�n�d�o� �q�u�a�r�t�i�l�e� � � � � � � � � � � � � � �-� � � �w�h�i�s�k�e�r�s� � � � � � � � � � � � � � � � � � �-� � � �p�u�n�t�i� �c�o�n�s�i�d�e�r�a�t�i� �t�r�o�p�p�o� �l�o�n�t�a�n�i� �d�a�l� �b�o�x� � � � � � � � � � � � � � � � � � � � � � �-� � � �s�i� �a�l�l�o�n�t�a�n�a�n�o� �i�n� �m�a�n�i�e�r�a� �a�n�o�m�a�l�a�,� �d�i�s�p�e�r�s�i� � � � � � � � � � � � � � � � � � � � � � �-� � � �outliers� � �-� � � �P�e�r� �d�a�t�i� �q�u�a�l�i�t�a�t�i�v�i� � � � � � �-� � � �r�i�g�u�a�r�d�a� �c�a�t�e�g�o�r�i�e� �e� �f�a�t�t�o�r�i� � � � � � � � � � �-� � � �G�r�a�f�i�c�o� �a� �b�a�r�r�e� �barchart()� � � � � � � � � � � � � � �-� � � �q�u�i� �s�o�l�o� �l�’�a�l�t�e�z�z�a� �h�a� �u�n� �s�i�g�n�i�f�i�c�a�t�o�,� �n�o�n� �l�’�a�r�e�a� � � � � � � � � � �-� � � �T�o�r�t�a� �pie()� � � � �<�!�-�-�l�i�s�t�-�s�e�p�a�r�a�t�o�r�-�-�>� � � � �-� � �B�i�v�a�r�i�a�t�a� � � � � � � � �C�o�n�s�i�d�e�r�a�r�e� �<�s�p�a�n� �c�l�a�s�s�=�"�u�n�d�e�r�l�i�n�e�"�>�d�u�e� �v�a�r�i�a�b�i�l�i�<�/�s�p�a�n�>� � � � � � � � �-� � � �q�u�a�l�i�t�a�t�i�v�a� �+� �q�u�a�n�t�i�t�a�t�i�v�a� �ToothGrowth� � � � � � � � � � �-� � � �c�o�n�s�i�d�e�r�a�r�e� �s�e� �e�s�i�s�t�o�n�o� �d�i�f�f�e�r�e�n�z�e� �n�e�l�l�a� �d�i�s�t�r�i�b�u�z�i�o�n�e� � � � � � � � � � � � � � �d�e�l�l�a� �q�u�a�n�t�i�t�a�t�i�v�a� �n�e�i� �d�i�v�e�r�s�i� �g�r�u�p�p�i� �d�e�f�i�n�i�t�i� �d�a�l�l�a� � � � � � � � � � � � � � �q�u�a�l�i�t�a�t�i�v�a� � � � � � � � � � � � � � �-� � � �c�o�n�t�r�o�l�l�o� �s�e� �i� �box()� �s�i� �s�o�v�r�a�p�p�o�n�g�o�n�o� � � � � � �-� � � �q�u�a�n�t�i�t�a�t�i�v�a� �+� �q�u�a�n�t�i�t�a�t�i�v�a� �fat� � � � � � � � � � �-� � � �e�s�i�s�t�e� �u�n�a� �r�e�l�a�z�i�o�n�e� �f�u�n�z�i�o�n�a�l�e� �(�l�i�n�e�a�r�e�)� � � � � � � � � � � � � � �t�r�a� �l�e� �d�u�e� �v�a�r�i�a�b�i�l�i� �q�u�a�n�t�i�t�a�t�i�v�e�?� � � � � � � � � � �-� � � �S�c�a�t�t�e�r�p�l�o�t� �plot()� � � � � � � � � � � � � � �-� � � �i�d�e�a� �i�n�d�i�c�a�t�i�v�a� � � � � � � � � � �-� � � �indici di correlazione� �cor()� � � � � � � � � � � � � � �-� � � �C�o�r�r�e�l�a�z�i�o�n�e� �d�i� �P�e�a�r�s�o�n� �simile al coefficiente angolare della retta su cui posano� � � � � � � � � � � � � � � � � � �-� � � �\�\�(�\�f�r�a�c�{�1�}�{�n�-�1�}� �\�s�u�m� �(�\�f�r�a�c�{�x�\�_�i� �-� �x�^�\�_�}�{�s�\�_�x�}�)�(�\�f�r�a�c�{�y�\�_�i� �-� �y�}�{�s�\�_�y�}�)�\�\�)� � � � � � � � � � � � � � � � � � � � � � �-� � � �o�s�s�e�r�v�a�z�i�o�n�i� �d�e�l�l�a� �v�a�r�i�a�b�i�l�e� �s�o�n�o� �s�t�a�n�d�a�r�d�i�z�z�a�t�e� � � � � � � � � � � � � � � � � � � � � � � � � � �-� � � �M�A� �v�a�r�i�a� �m�o�l�t�o� �i�n� �b�a�s�e� �a�i� �v�a�l�o�r�i� �o�u�t�l�i�e�r�s� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �-� � � �s�t�e�s�s�i� �p�r�o�b�l�e�m�i� �d�e�l�l�a� �m�e�d�i�a� �c�a�m�p�i�o�n�a�r�i�a� � � � � � � � � � � � � � � � � � � � � � �-� � � �=�0� �n�u�v�o�l�a� �<�s�p�a�n� �c�l�a�s�s�=�"�u�n�d�e�r�l�i�n�e�"�>�n�o�n� �d�i�s�t�r�i�b�u�i�t�a�<�/�s�p�a�n�>� �s�u�l�l�a� �r�e�t�t�a� � � � � � � � � � � � � � � � � � � � � � �-� � � �&�g�t�;�0� �c�’�é� �c�o�r�r�e�l�a�z�i�o�n�e� �<�s�p�a�n� �c�l�a�s�s�=�"�u�n�d�e�r�l�i�n�e�"�>�l�i�n�e�a�r�e�<�/�s�p�a�n�>� � � � � � � � � � � � � � � � � � � � � � �-� � � �&�l�t�;�0� �c�o�r�r�e�l�a�z�i�o�n�e� �<�s�p�a�n� �c�l�a�s�s�=�"�u�n�d�e�r�l�i�n�e�"�>�l�i�n�e�a�r�e� �i�n�v�e�r�s�a�<�/�s�p�a�n�>� � � � � � � � � � � � � � �-� � � �C�o�r�r�e�l�a�z�i�o�n�e� �d�i� �S�p�e�a�r�m�a�n� � � � � � � � � � � � � � � � � � �-� � � �v�a�l�u�t�a� �l�a� �m�o�n�o�t�o�n�i�a� � � � � � � � � � � � � � � � � � � � � � �-� � � �c�o�n�t�a� �l�e� �c�o�p�p�i�e� �c�o�n�c�o�r�d�i� �e� �d�i�s�c�o�r�d�i� � � � � � � � � � � � � � �-� � � �correlazione NON É causalitá� � � � � � �-� � � �q�u�a�l�i�t�a�t�i�v�a� �+� �q�u�a�l�i�t�a�t�i�v�a� �grades� � � � � � � � � � �-� � � �s�i� �t�a�b�u�l�a�n�o� �i�n� � � � � � � � � � � � � � �-� � � �t�a�b�e�l�l�e� �a� �d�o�p�p�i�a� �e�n�t�r�a�t�a� � � � � � � � � � � � �-� � � �i�n�d�i�c�i� � � � � � � � � � � � � � �-� � � �T�a�u� �d�i� �K�e�n�d�a�l�l� � � � � � � � � � � � � � � � � � �-� � � �i�n�d�i�c�e� �d�i� �c�o�n�c�o�r�d�a�n�z�a� � � � � � � � � � � � � � � � � � � � � � �-� � � �i� �f�a�t�t�o�r�i� �d�e�v�o� �q�u�i�n�d�i� �a�v�e�r�e� �u�n� �o�r�d�i�n�a�m�e�n�t�o� � � � � � �#�#�#�#� �I�n�f�e�r�e�n�z�i�a�l�e� �{�#�i�n�f�e�r�e�n�z�i�a�l�e�}� � � � �O� �Inferenza Parametrica� � �C�a�m�p�i�o�n�e� �c�a�s�u�a�l�e� �d�i� �v�a�r�i�a�b�i�l�i� � �\�\�(�(�X�\�_�1�,� �X�\�_�2�,� �.�.�.� �,� �X�\�_�n�)�\�\�)� � �D�a�t�i� � �\�\�(�(�x�\�_�1�,�x�\�_�2�,� �.�.�.� �,� �x�\�_�n�)�\�\�)� � � � �-� � � �Statistica Parametrica� � � � � � �-� � � �i�p�o�t�e�s�i� �d�i� �c�o�n�o�s�c�e�r�e� �l�a� �d�i�s�t�r�i�b�u�z�i�o�n�e� �m�a� �n�o�n� �i� �p�a�r�a�m�e�t�r�i� �d�i� �q�u�e�s�t�a� � �-� � � �Stimatori� � � � � � �-� � � �M�e�d�i�a� �C�a�m�p�i�o�n�a�r�i�a� � � � � � � � � � �-� � � �\�\�(�\�b�a�r�{�X�}�=�\�f�r�a�c�{�1�}�{�n�}� �\�s�u�m�\�_�{�i�=�1�}� �X�\�_�i�\�\�)� � � � � � � � � � �-� � � �D�e�v�e� �e�s�s�e�r�e� �c�a�l�c�o�l�a�b�i�l�e� � � � � � � � � � � � � � �-� � � �n�o� �i�n�c�o�g�n�i�t�e� � � � � � �-� � � �V�a�r�i�a�n�z�a� �C�a�m�p�i�o�n�a�r�i�a� � � � � � � � � � �-� � � �\�\�(�\�d�e�l�t�a�^�2� �=� �\�f�r�a�c�{�1�}�{�n�-�1�}�\�s�u�m�\�_�{�i�=�1�}�(�X�\�_�i� �-� �\�b�a�r�{�X�}�)�^�2�\�\�)� � �-� � � �L�e�g�g�i� �d�e�i� �G�r�a�n�d�i� �N�u�m�e�r�i� �(�t�a�g�l�i�a� �\�\�(�n� �\�g�e� �3�0�\�\�)�)� �(famiglia di teoremi)� � � � � � �-� � � �M�o�s�t�r�a�n�o� �i�l� �l�e�g�a�m�e� �t�r�a� �g�l�i� �s�t�i�m�a�t�o�r�i� �e� �i� �p�a�r�a�m�e�t�r�i� � � � � � �-� � � �D�a�t�a� �u�n�a� �c�o�l�l�e�z�i�o�n�e� �d�i� �V�.�A�.�i�n�d�i�p�e�n�d�e�n�t�i� �e� �i�d�e�n�t�i�c�a�m�e�n�t�e� �d�i�s�t�r�i�b�u�i�t�e�:� � � � � � � � � � �-� � � �\�\�(� �\�l�i�m�\�_�{�n� �\�t�o� �\�i�n�f�t�y�}� �\�b�a�r�{�X�}� �\�s�i�m�e�q� �\�m�a�t�h�b�b�{�E�}�(�X�\�_�1�)� � �\�\�)� � � � � � � � � � � � � � �-� � � �NB� �\�\�(�E�(�X�\�_�1�)�\�\�)� �é� �i�n� �f�u�n�z�i�o�n�e� �d�e�i� �p�a�r�a�m�e�t�r�i� � � � � � � � � � �-� � � �\�\�(�\�l�i�m�\�_�{�n�\�t�o�\�i�n�f�t�y�}� �\�d�e�l�t�a�^�2�=�V�a�r�(�X�\�_�1�)�\�\�)� � �-� � � �U�n� �T�e�o�r�e�m�a� �d�e�l� �L�i�m�i�t�e� �C�e�n�t�r�a�l�e� � � � � � �-� � � �D�a�t�a� �u�n�a� �c�o�l�l�e�z�i�o�n�e� �d�i� �V�.�A�.�i�n�d�i�p�e�n�d�e�n�t�i� �e� �i�d�e�n�t�i�c�a�m�e�n�t�e� �d�i�s�t�r�i�b�u�i�t�e�:� � � � � � � � � � �-� � � �\�\�(�\�l�i�m�\�_�{�n�\�t�o�\�i�n�f�t�y�}�\�m�a�t�h�b�b�{�P�}�(�\�f�r�a�c�{�\�b�a�r�{�X�}� �-� �\�m�a�t�h�b�b�{�E�}�(�X�\�_�1�)�}�{�\�f�r�a�c�{�s�d�(�X�1�)�}�{�\�s�q�r�t�{�n�}�}�}�\�l�e� �x�)� �\�s�i�m�e�q� �\�m�a�t�h�b�b�{�P�}�(�Z� �\�l�e� �x�)�\�\�)� � � � � � � � � � � � � � �-� � � �d�o�v�e� �\�\�(�Z� �\�s�i�m� �N�(�0�,�1�)�\�\�)� � � � � � � � � � �-� � � �\�\�[�l�i�m�\�_�{�n�\�t�o�\�i�n�f�t�y�}�\�b�a�r�{�X�}� �\�s�i�m�e�q� �N�(�\�m�a�t�h�b�b�{�E�}�(�X�\�_�1�)�,� �\�f�r�a�c�{�V�a�r�(�X�\�_�1�)�}�{�n�}�)�\�\�]� � � � � � � � � � � � � � �-� � � �c�o�n�v�e�r�g�e�n�z�a� �v�e�l�o�c�e�,� �g�i�á� �a� �v�a�l�o�r�i� �b�a�s�s�i� � � � � � �-� � � �NB� � � � � � � � � � �-� � � �i�n� �u�n�a� �n�o�r�m�a�l�e� �\�\�[�N�(�\�m�u� �,� �\�d�e�l�t�a�^�2�)�\�\�]� � � � � � � � � � � � � � �-� � � �\�\�[� �\�b�a�r�{�X�}� �=� �N�(�\�m�u� �,� �\�f�r�a�c�{�\�d�e�l�t�a�^�2�}�{�n�}�)� �\�\�]� � � � � � � � � � � � � � �-� � � �\�\�[�\�l�i�m�\�_�{�n�\�t�o�\�i�n�f�t�y�}�\�m�a�t�h�b�b�{�P�}�(�\�f�r�a�c�{�\�d�e�l�t�a�^�2� �-� �V�a�r�(�X�\�_�1�)�}�{�\�f�r�a�c�{�1�}�{�\�s�q�r�t�{�n�}�}�}� �\�l�e� �x�)� �\�s�i�m�e�q� �\�m�a�t�h�b�b�{�P�}�(�Z�\�l�e� �x�)�\�\�]� � � � � � � � � � � � � � � � � � �-� � � �c�o�n� �\�\�[�Z� �\�s�i�m� �N�(�0� �,� �?�)�\�\�]� � � � � � � � � � �-� � � �i�n� �u�n�a� �n�o�r�m�a�l�e� � � � � � � � � � � � � � �-� � � �\�\�[�\�f�r�a�c�{�\�d�e�l�t�a�^�2�(�n�-�1�)�}�{�V�a�r�(�X�\�_�1�)�}� �\�s�i�m� �\�c�h�i�^�2�(�n�-�1�)�\�\�]� � � � � � � � � � � � � � � � � � �-� � � �u�n�a� �C�h�i�q�u�a�d�r�o� �c�o�n� �n�-�1� �g�r�a�d�i� �d�i� �l�i�b�e�r�t�á� � � � �<�!�-�-�l�i�s�t�-�s�e�p�a�r�a�t�o�r�-�-�>� � � � �-� � �I�n�t�e�r�v�a�l�l�i� �d�i� �C�o�n�f�i�d�e�n�z�a� � � � � � � � �R�e�s�t�i�t�u�i�r�e� �d�u�e� �c�o�s�e� � � � � � � � �1�.� � �I�n�t�e�r�v�a�l�l�o� �\�\�[�[�a�,�b�]�\�\�]� � � � � � �2�.� � �C�o�n�f�i�d�e�n�z�a� �\�\�[�1�-�\�a�l�p�h�a�\�\�]� � � � � � � � � � �-� � � �a�n�c�h�e� �p�r�o�b�a�b�i�l�i�t�á� � � � � � � � �>� �L�a� �confidenza/probabilitá� �c�h�e� �l�’�i�n�t�e�r�v�a�l�l�o� �\�\�[�[�a�,�b�]�\�\�]� �c�o�n�t�e�n�g�a� �i�l� �valore vero� � � � � � �>� �d�e�l� �p�a�r�a�m�e�t�r�o� �i�n� �s�e�g�u�i�t�o� �é� � �\�\�[�1�-�\�a�l�p�h�a�\�\�]� � � � � � � � �<�!�-�-�l�i�s�t�-�s�e�p�a�r�a�t�o�r�-�-�>� � � � � � � � �-� � �M�e�d�i�a� � � � � � � � � � � � �-� � � �P�r�o�c�e�s�s�o� �d�i� �D�e�d�u�z�i�o�n�e� � � � � � � � � � � � � � �S�e� �v�o�g�l�i�o� �u�n�a� �m�a�g�g�i�o�r�e� �C�o�n�f�i�d�e�n�z�a� �l�’�i�n�t�e�r�v�a�l�l�o� �d�i� �c�o�n�f�i�d�e�n�z�a� �s�a�r�á� �m�a�g�g�i�o�r�e� � � � � � � � � � � � � � �v�e�r�o� �m�e�t�o�d�o� �d�i�m�i�n�u�i�r�e� �l�’�i�n�t�e�r�v�a�l�l�o� �é� �a�u�m�e�n�t�a�r�e� �l�a� �t�a�g�l�i�a� �c�a�m�p�i�o�n�a�r�i�a� � � � � � � � � � � � � � �1�.� � �A�v�e�r�e� �u�n�a� �quantitá pivotale� �p�e�r� �l�a� �M�e�d�i�a� � � � � � � � � � � � � � � � � � �-� � � �V�.�A�.� �f�u�n�z�i�o�n�e� �d�e�l� �c�a�m�p�i�o�n�e� �c�a�s�u�a�l�e� �e� �d�e�l� �p�a�r�a�m�e�t�r�o� �i�n�c�o�g�n�i�t�o� � � � � � � � � � � � � � � � � � �-� � � �d�e�v�e� �a�v�e�r�e� �u�n�a� �d�i�s�t�r�i�b�u�z�i�o�n�e� �n�o�t�a� �e� �c�a�l�c�o�l�a�b�i�l�e� � � � � � � � � � � � � � � � � � � � � � �-� � � �o�v�v�e�r�o� �d�e�v�e� �a�v�e�r�n�e� �t�u�t�t�i� �i� �p�a�r�a�m�e�t�r�i� � � � � � � � � � � � � � � � � � �-� � � �i�n�d�i�c�h�i�a�m�o� �\�\�[�\�m�u� �=� �\�m�a�t�h�b�b�{�E�}�(�X�\�_�{�1�}�)�\�\�]� � � � � � � � � � � � � � � � � � � � � � �-� � � �\�\�[�\�f�r�a�c�{�\�b�a�r�{�X�}� �-� �\�m�u�}�{�\�f�r�a�c�{�S�}�{�\�s�q�r�t�{�n�}�}�}�\�\�]� � � � � � � � � � � � � � � � � � � � � � � � � � �-� � � �d�o�v�e� �\�\�[�S� �=� �\�s�q�r�t�{�\�d�e�l�t�a�^�2�}�\�\�]� � � � � � � � � � � � � � � � � � � � � � � � � � �-� � � �T�e�o�r�e�m�i� �d�i�m�o�s�t�r�a�n�o� �c�h�e�:� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �-� � � �\�\�(�t�\�\�)� �d�i� �S�t�u�d�e�n�t� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �-� � � �m�o�l�t�o� �s�i�m�i�l�e� �a�d� �u�n�a� �n�o�r�m�a�l�e�,� �m�a� �p�i�ú� �p�e�s�a�n�t�e� �s�u�l�l�e� �c�o�d�e� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �-� � � �a�l�l�’�a�u�m�e�n�t�a�r�e� �d�e�i� �g�r�a�d�i� �d�i� �l�i�b�e�r�t�á� �d�i�v�e�n�t�a� �i�n�d�i�s�t�i�n�g�u�i�b�i�l�e� �a�d� �u�n�a� �n�o�r�m�a�l�e� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �-� � � �L�a� �Q�u�a�n�t�i�t�á� �P�i�v�o�t�a�l�e� �é� �s�i�m�i�l�e� �a�d� �u�n�a� �\�\�(�t�\�\�)� �d�i� �S�t�u�d�e�n�t� �c�o�n� �\�\�(�(�n�-�1�)�\�\�)� �g�r�a�d�i� �d�i� �l�i�b�e�r�t�á� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �-� � � �\�\�(�t�(�n�-�1�)�\�\�)� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �-� � � �s�e� �\�\�(�n� �\�g�e� �3�0�\�\�)� �s�e�m�p�r�e�,� �l�a� �t�a�g�l�i�a� �d�e�v�e� �e�s�s�e�r�e� �a�b�b�a�s�t�a�n�z�a� �g�r�a�n�d�e� � � � � � � � � � � � � � �2�.� � �\�\�[�\�m�a�t�h�b�b�{�P�}�(�z�\�_�1� �\�l�e� �\�f�r�a�c�{�\�b�a�r�{�X�}� �-� �\�m�u�}�{�\�f�r�a�c�{�S�}�{�\�s�q�r�t�{�n�}�}�}� �\�l�e� �z�\�_�2�)� �=� �1�-�\�a�l�p�h�a� �=� �0�,�9�5�\�\�]� � � � � � � � � � � � � � � � � � �-� � � �L�’�a�r�e�a� �c�o�m�p�r�e�s�a� �t�r�a� �\�\�(�z�\�_�1�\�\�)� �e� �\�\�(�z�\�_�2�\�\�)� �d�i� �u�n�a� �P�D�F� �d�e�l�l�a� �\�\�(�t�(�n�-�1�)�\�\�)� �v�a�r�r�á� �\�\�(�0�,�9�5�\�\�)� �(�l�a� �c�o�n�f�i�d�e�n�z�a�)� � � � � � � � � � � � � � � � � � � � � � �-� � � �s�o�n�o� �i�n�f�i�n�i�t�e� �l�e� �c�o�p�p�i�e� �d�i� �\�\�(�z�\�\�)� �i�n� �q�u�a�n�t�o� �s�i� �s�p�o�s�t�a�n�o� �i�n�s�i�e�m�e� � � � � � � � � � � � � � � � � � � � � � � � � � �-� � � �p�e�r� �c�o�n�v�e�n�z�i�o�n�e� �v�i�e�n�e� �s�c�e�l�t�a� �l�a� �c�o�p�p�i�a� �d�i� �p�e�r�c�e�n�t�i�l�i� �s�i�m�m�e�t�r�i�c�i� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �-� � � �r�i�s�p�e�t�t�o� �l�e� �a�r�e�e� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �-� � � �l�e� �a�r�e�e� �a� �s�i�n�i�s�t�r�a� �d�i� �\�\�(�z�\�_�1�\�\�)� �e� �a� �d�e�s�t�r�a� �d�i� �\�\�(�z�\�_�2�\�\�)� �d�e�v�o�n�o� �e�s�s�e�r�e� �u�g�u�a�l�i� � � � � � � � � � � � � � �3�.� � �I�n�v�e�r�t�i�r�e� �l�a� �c�a�t�e�n�a� �d�i� �d�i�s�u�g�u�a�l�i�a�n�z�e� �p�e�r� �i�s�o�l�a�r�e� �\�\�(�\�m�u�\�\�)� �(�u�n�i�c�a� �i�n�c�o�g�n�i�t�a�)� � � � � � � � � � � � � � � � � � �-� � � �\�\�[�\�m�a�t�h�b�b�{�P�}�(�\�b�a�r�{�X�}� �-� �t�0�,�9�2�5� �\�c�d�o�t� �\�f�r�a�c�{�S�}�{�\�s�q�r�t�{�n�}�}� �<� �\�m�u� �<� �\�b�a�r�{�X�}� �-� �t�0�,�0�2�5� �\�c�d�o�t� �\�f�r�a�c�{�S�}�{�\�s�q�r�t�{�n�}�}�)� �=� �0�,�9�5� �\�\�]� � � � � � � � � � � � � � � � � � � � � � �-� � � �A� �q�u�e�s�t�o� �p�u�n�t�o� �h�o� �l�’�i�n�t�e�r�v�a�l�l�o� �d�i� �c�o�n�f�i�d�e�n�z�a� � � � � � � � � � � � �I�n� �c�a�s�o� �c�h�e� �l�a� �t�a�g�l�i�a� �\�\�(�n� �<� �3�0�\�\�)� �l�a� �\�\�(�t�(�n�-�1�)�\�\�)� �n�o�n� �é� �u�n�a� �b�u�o�n�a� �a�p�p�r�o�s�s�i�m�a�z�i�o�n�e� � � � � � � � � � �A�l�l�o�r�a� �d�e�v�o� �g�u�a�r�d�a�r�e� �i� �c�a�s�i� �p�a�r�t�i�c�o�l�a�r�i� �d�e�l�l�e� �d�i�s�t�r�i�b�u�z�i�o�n�i� �(�N�o�r�m�a�l�e�)� � � � � � � � � � � � �-� � � �S�e� �l�e� �v�a�r�i�a�b�i�l�i� �s�o�n�o� �\�\�[�\�s�i�m� �N�(�\�m�u� �,� �\�d�e�l�t�a�^�2�)�\�\�]� � � � � � � � � � � � � � �-� � � �\�\�[�\�f�r�a�c�{�\�b�a�r�{�X�}�-�\�m�u�}�{�\�f�r�a�c�{�S�}�{�\�s�q�r�t�{�n�}�}�}� �\�s�i�m� �t�(�n�-�1�)�\�\�]� � � � � � � � �<�!�-�-�l�i�s�t�-�s�e�p�a�r�a�t�o�r�-�-�>� � � � � � � � �-� � �P�r�o�p�o�r�z�i�o�n�i� � � � � � � � � � � � �P�a�r�a�m�e�t�r�o�:� �Proporzione� �\�\�(�p�\�\�)� � � � � � � � � � �S�u�p�p�o�n�i�a�m�o� �d�i� �c�a�m�p�i�o�n�a�r�e� �d�a� �u�n�a� �V�.�A�.� �d�i� �B�e�r�n�o�u�l�l�i�(�\�\�(�p�\�\�)�)� � � � � � � � � � � � �-� � � �i�l� �c�a�s�o� �p�e�r� �t�u�t�t�i� �l�e� �v�a�r�i�a�b�i�l�i� �c�a�t�e�g�o�r�i�a�l�i� �(�q�u�a�l�i�t�a�t�i�v�e�)� �c�o�n� �s�o�l�o� �2� �e�t�i�c�h�e�t�t�e� � � � � � � � � � � � �\�\�(�\�m�a�t�h�b�b�{�E�}�(�X�)� �=� �1�\�c�d�o�t� �p� �+� �0� �\�c�d�o�t� �(�1�-�p�)� �=� �p�\�\�)� � � � � � � � � � � � �-� � � �N�B�:� �\�\�(�\�m�a�t�h�b�b�{�E�}�(�X�)� �=� �\�m�a�t�h�b�b�{�E�}�(�\�b�a�r�{�X�}�)�\�\�)� � � � � � � � � � � � �L�a� �p�r�o�p�o�r�z�i�o�n�e� �e�’� �a�n�c�h�e� �l�a� �m�e�d�i�a� �d�e�l�l�a� �b�e�r�n�u�l�l�i� � � � � � � � � � � � �1�.� � �Q�u�a�n�t�i�t�á� �P�i�v�o�t�a�l�e� � � � � � � � � � � � � � �-� � � �\�\�[�Q� �=� �\�f�r�a�c�{�\�f�r�a�c�{�1�}�{�n�}�\�s�u�m�\�_�{�i�=�1�}�^�{�n�}� �X�\�_�i� �-� �p�}�{�\�s�q�r�t�{�\�f�r�a�c�{�p�(�1�-�p�)�}�{�n�}�}�}�\�\�]� � � � � � � � � � � � � � � � � � �-� � � �m�o�l�t�o� �s�i�m�i�l�e� �a�l�l�a� �q�u�a�n�t�i�t�á� �p�i�v�o�t�a�l�e� �p�e�r� �l�a� �m�e�d�i�a� �d�i� �p�o�p�o�l�a�z�i�o�n�e� � � � � � � � � � � � � � �-� � � �\�\�(�p�(�1�-�p�)� �=� �V�a�r�(�X�)�\�\�)� � � � � � � � � � � � � � �-� � � �\�\�(�Q�\�\�)� �c�i�r�c�a� �\�\�(�N�(�0�,�1�)�\�\�)� �a� �\�\�(�\�i�n�f�t�y�\�\�)� � � � � � � � � � � � � � � � � � �-� � � �s�e� �\�\�(�n�<�3�0�\�\�)� �n�o�n� �p�o�s�s�i�m�o� �f�a�r�e� �n�u�l�l�a�,� �a�b�b�i�a�m�o� �g�i�a�’� �i�p�o�t�i�z�z�a�t�o� �d�i� �c�a�m�p�i�o�n�a�r�e� �d�a� �u�n�a� �B�e�r�n�u�l�l�i� � � � � � � � � � �2�.� � �\�\�[�\�m�a�t�h�b�b�{�P�}�(�z�\�_�1� �<� �Q� �<� �z�\�_�2�)� �=� �1� �-� �\�a�l�p�h�a� �=� �0�,�9�5�\�\�]� � � � � � � � � � � � � � �-� � � �d�u�e� �p�e�r�c�e�n�t�i�l�i� �(�s�o�l�i�t�a�m�e�n�t�e� �v�e�n�g�o�n�o� �p�r�e�s�e� �s�i�m�m�e�t�r�i�c�h�e�)� � � � � � � � � � � � � � � � � � �-� � � �q�n�o�r�m�(�0�.�0�2�5�)� �e� �q�n�o�r�m�(�0�.�9�7�5�)� � � � � � � � � � �3�.� � �E�s�t�r�a�r�r�e� �l�’�i�n�c�o�g�n�i�t�a� �\�\�(�p�\�\�)� � � � � � � � � � � � � � �-� � � �\�\�[�\�m�a�t�h�b�b�{�P�}�(�a� �<� �p� �<� �b�)� �=� �1�-�\�a�l�p�h�a�\�\�]� � � � � � � � � � � � �\�\�(�[�a�,�b�]�\�\�)� �e�’� �l�’�i�n�t�e�r�v�a�l�l�o� �d�i� �c�o�n�f�i�d�e�n�z�a� �c�e�r�c�a�t�o� � � � � � � � � � � � �\�#�R� � � � � � � � � � �b�i�n�o�m�.�t�e�s�t�(�)� �-�-� �e�s�a�t�t�a� � � � � � � � � � �p�r�o�p�.�t�e�s�t�(�)� � �-�-� �a�p�p�r�o�s�s�i�m�a�t�a� � � � � � � � �<�!�-�-�l�i�s�t�-�s�e�p�a�r�a�t�o�r�-�-�>� � � � � � � � �-� � �D�i�f�f�e�r�e�n�z�a� �d�i� �M�e�d�i�e� � � � � � � � � � � � �-� � � �p�a�z�i�e�n�t�i� �n�o�n� �t�r�a�t�t�a�t�i� �e� �t�r�a�t�t�a�t�i� �f�a�r�m�a�c�o�l�o�g�i�c�a�m�e�n�t�e� � � � � � � � � � � � � � �-� � � �c�a�m�p�i�o�n�i� �i�n�d�i�p�e�n�d�e�n�t�i� � � � � � � � � � � � � � � � � � �-� � � �1� �V�a�r�i�a�b�i�l�e� �p�r�e�s�s�i�o�n�e� �+� �1� �v�a�r�i�a�b�i�l�e� �q�u�a�l�i�t�a�t�i�v�a� �(�p�r�e�n�d�e� �i�l� �f�a�r�m�a�c�o� �o� �n�o�)� � � � � � � � � � � � � � � � � � �-� � � �d�i�f�f�e�r�e�n�z�a� �d�i� �m�e�d�i�e� � � � � � � � � � �-� � � �p�e�s�o� �d�i� �p�a�z�i�e�n�t�i� �p�r�i�m�a� �e� �d�o�p�o� �d�i�e�t�a� � � � � � � � � � � � � � �-� � � �c�a�m�p�i�o�n�i� �a�p�p�a�i�a�t�i� � � � � � � � � � � � � � � � � � �-� � � �2� �V�a�r�i�a�b�i�l�i� �(�p�e�s�o� �p�r�i�m�a� �e� �p�e�s�o� �d�o�p�o�)� � � � � � � � � � � � � � � � � � �-� � � �I�n�t�e�r�v�a�l�l�o� �d�i� �c�o�n�f�i�d�e�n�z�a� �d�e�l�l�a� �m�e�d�i�a� �d�e�l�l�e� �d�i�f�f�e�r�e�n�z�e� � � � � � � � � � � � �A�b�b�i�a�m�o� �\�\�(�Q� �\�s�i�m� �t�(�n�-�1�)�,� �n�\�t�o� �\�i�n�f�t�y�\�\�)� � � � � � � � � � � � �\�#�R� � � � � � � � � � �t�.�t�e�s�t�(�)� � � � �<�!�-�-�l�i�s�t�-�s�e�p�a�r�a�t�o�r�-�-�>� � � � �-� � �T�e�s�t� �d�i� �I�p�o�t�e�s�i� � � � � � � � �A�l�t�r�o� �m�o�d�o� �p�e�r� �l�e�g�g�e�r�e� �l�e� �s�t�e�s�s�e� �i�n�f�o�r�m�m�a�z�i�o�n�i� �r�i�s�p�e�t�t�o� �a�g�l�i� �i�n�t�e�r�v�a�l�l�i� �d�i� �c�o�n�f�i�d�e�n�z�a� � � � � � � � �-� � � �I�p�o�t�e�s�i� � � � � � � � � � �-� � � �o�v�v�e�r�o� �p�r�o�p�o�s�i�z�i�o�n�e� �c�h�e� �r�i�g�u�a�r�d�a� �i� �p�a�r�a�m�e�t�r�i� � � � � � � � � � �-� � � �Ipotesi nulla� �\�\�(�H�\�_�0�\�\�)� � � � � � � � � � � � � � �-� � � �i�p�o�t�e�s�i� �i�n� �c�u�i� �c�r�e�d�o� �e� �b�a�s�o� �i�l� �r�a�g�i�o�n�a�m�e�n�t�o� � � � � � � � � � �-� � � �Ipotesi Alternativa� �\�\�(�H�\�_�1�\�\�)� � � � � � � � � � � � � � �-� � � �p�u�ó� �p�o�r�t�a�r�e� �a�d� �a�b�b�a�n�d�o�n�a�r�e�/�r�i�f�i�u�t�a�r�e� �l�’�i�p�o�t�e�s�i� �n�u�l�l�a� � � � � � � � � � � � � � � � � � �-� � � �s�e� �i� �d�a�t�i� �t�i� �c�o�s�t�r�i�n�g�o�n�o� � � � � � � � � � �-� � � �l�e� �I�p�o�t�e�s�i� �p�o�s�s�o�n�o� �e�s�s�e�r�e� � � � � � � � � � � � � � �-� � � �c�o�m�p�o�s�t�e� � � � � � � � � � � � � � � � � � �-� � � �\�\�(�\�m�u� �>� �1�0�\�\�)� � � � � � � � � � � � � � � � � � � � � � �-� � � �o�n�e�-�s�i�d�e�d� �|� �u�n�i�l�a�t�e�r�a�l�i� � � � � � � � � � � � � � � � � � �-� � � �\�\�(�\�m�u� �\�n�e�q� �1�0�\�\�)� � � � � � � � � � � � � � � � � � � � � � �-� � � �t�w�o�-�s�i�d�e�d� �|� �b�i�l�a�t�e�r�a�l�i� � � � � � � � � � � � � � �-� � � �s�e�m�p�l�i�c�i� � � � � � � � � � � � � � � � � � �-� � � �\�\�(�\�m�u� �=� �1�0�\�\�)� � � � � � � � �T�e�s�t�o� �l�a� �M�e�d�i�a� �c�a�m�p�i�o�n�a�r�i�a� �r�i�s�p�e�t�t�o� �a�l�l�’�i�p�o�t�e�s�i� �(�\�\�(�p�\�t�e�x�t�{�-�v�a�l�u�e�}�\�\�)�)� � � � � � � � �-� � � �\�\�[�\�m�a�t�h�b�b�{�P�}�(�\�f�r�a�c�{�1�}�{�n�}�\�s�u�m�\�_�{�i�=�1�}�^�{�n�}�X�\�_�i� �>� �\�b�a�r�{�x�}�=�\�f�r�a�c�{�1�}�{�n�}�\�s�u�m�\�_�{�i�=�1�}�^�{�n�}�x�\�_�i�)� �=� �p�\�\�]� � � � � � � � � � �-� � � �a� �s�i�n�i�s�t�r�a� �d�e�l� �&�g�t�;� �h�o� �l�a� �P�D�F� �s�o�t�t�o� �\�\�(�H�\�_�0�\�\�)� � � � � � � � � � �-� � � �s�e� �\�\�(�p�\�\�)� �p�i�c�c�o�l�o� �(�m�i�n�o�r�e� �d�i� �\�\�(�\�a�l�p�h�a�\�\�)�)� � � � � � � � � � � � � � �-� � � �a�b�b�a�n�d�o�n�o� �\�\�(�H�\�_�0�\�\�)� � � � � � � � � � �-� � � �s�e� �\�\�(�p�\�\�)� �g�r�a�n�d�e� �(�m�a�g�g�i�o�r�e� �d�i� �\�\�(�\�a�l�p�h�a�\�\�)�)� � � � � � � � � � � � � � �-� � � �m�a�n�t�e�n�g�o� �\�\�(�H�\�_�0�\�\�)� � � � � � � � � � �-� � � �c�o�n�f�r�o�n�t�a�n�d�o� �\�\�(�p�\�\�)� �c�o�n� �\�\�(�\�a�l�p�h�a�\�\�)� � � � � � � � � � �-� � � �q�u�e�s�t�a� �n�o�n� �l�a� �s�a�p�p�i�a�m�o� �c�a�l�c�o�l�a�r�e� �(�n�o�n� �s�a�p�p�i�a�m�o� �l�a� �d�i�s�t�r�i�b�u�z�i�o�n�e�)� � � � � � � � �T�r�a�s�f�o�r�m�a� �i�n� �q�u�a�n�t�i�t�á� �p�i�v�o�t�a�l�e� � � � � � � � �-� � � �\�\�(�\�m�a�t�h�b�b�{�P�}�(�Q� �>� �\�f�r�a�c�{�\�b�a�r�{�x�}�-�\�m�u�}�{�\�f�r�a�c�{�S�}�{�\�s�q�r�t�{�n�}�}�}�)�=�p�\�\�)� � � � � � � � � � �-� � � �\�\�(�Q� �\�s�i�m� �t�(�n�-�1�)�\�\�)� �